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Abstract. High Frequency (HF) radio waves propagating in
the ionospheric random inhomogeneous media exhibit a spa-
tial nonlinearity wavefront which may limit the performance
of conventional high-resolution methods for HF sky wave
radar systems. In this paper, the spatial correlation func-
tion of wavefront is theoretically derived on condition that
the radio waves propagate through the ionospheric structure
containing irregularities. With this function, the influence of
wavefront distortions on the array covariance matrix can be
quantitatively described with the spatial coherence matrix,
which is characterized with the coherence loss parameter.
Therefore, the problem of wavefront correction is recast as
the determination of coherence loss parameter and this is
solved by the covariance matching (CM) technique. The ef-
fectiveness of the proposed method is evaluated both by the
simulated and real radar data. It is shown numerically that
an improved direction of arrival (DOA) estimation perfor-
mance can be achieved with the corrected array covariance
matrix.

Keywords
Ionospheric irregularities, wavefront distortion, covari-
ance matching technique, particle swarm optimization
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1. Introduction
The use of High Frequency (HF) sky wave propagation

as a means of target detection and tracking over the horizon
has been investigated for many years [1], [2]. It has showed
powerful strength in large-scale surveillance capacities at an
economic cost. In addition to this, it can be also adopted
in the applications of ocean state estimation such as wind,
ocean waves and ocean currents [3].

However, as for the ionospherically propagated HF ra-
dio wave, the contamination suffered during the ionospheric
transit usually influences the accurate determination of target
as well as the ocean state information extraction [4], [5]. One

type of the contamination results from the fine-scale irreg-
ular ionospheric structure which consists of irregularities of
various electron density fluctuations. Such irregular struc-
ture can manifest in its distortions to the radio wavefronts of
signals. Borne out by experiments [6], the distorted wave-
fronts exhibit progressive decorrelation between the receiv-
ing array sensors as the spatial separation distance increases.
Coherence loss may directly result in the degradation of the
performance of eigenstructure based high resolution tech-
niques [7]. This is because, as for the perfect wavefront
situation, each wavefront contributes a rank one component
to the array covariance matrix. When taking the wavefront
distortions into consideration, the array covariance matrix
will be tapered by another random matrix in the manipula-
tion of Schur-Hadamard product (element-wise multiplica-
tion operator) [8]. Such modulation can lead to the increase
of the effective rank and cause the eigensubspace leakage
problem [9]. As for the conventional MUltiple SIgnal Clas-
sification (MUSIC) algorithm, the leaked signal subspace can
give rise to the smearing in the direction of arrival (DOA),
i.e. the wavefront appears to arrive from a spread of angles
centered at the true direction.

To enhance the performance of MUSIC algorithm in
DOA estimation for HF sky wave radar systems, special at-
tention has to be paid to the role of spatial coherence in array
processing. In this paper, an experimental investigation is
first undertaken to demonstrate the breakdown of MUSIC
algorithm when wavefronts have reduced spatial coherence.
Afterwards, amodel characterizing the spatial coherence loss
after propagating through the ionosphere containing irregu-
larities is theoretically constructed. Combined with the CM
technique [10], [11], the restored array covariance matrix
can be obtained and thus results in a noticeable performance
improvement of the conventional MUSIC algorithm.

The remainder of the paper is organized as follows.
In Sec. 2, the spatial correlation characteristics are studied
with a large aperture antenna array. Afterwards, the distor-
tions on the wavefront are modelled and corrected in Sec. 3.
To verify the accuracy of the proposed model and the ef-
fectiveness of wavefront correction method, experiments on
both simulated and real radar data are undertaken in Sec. 4.
Eventually, a brief summary is given in Sec. 5.
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Notation: (·)T and (·)H are the transpose and Hermitian
transpose operation, ∗ is the complex conjugate, ◦ indicates
the Schur-Hadamard product, ∅ is the inverse of Schur-
Hadamard product, E {·} is the expectation operator, ‖·‖F
is the Frobenius norm, tr {·} is the sum of diagonal elements.

2. Problem Formulation from an Ex-
perimental Study on the Signal
Wavefront
In order to further study the wavefront signatures of

ionospherically propagated radio waves, measurements of
the beacon signal transmission received on a large aperture
antenna array have been made. A brief description of the
experimental arrangement is given below.

The beacon transmitter is located on an island with the
baseline distance of 890 km far from the receiving station.
The transmitted signal impinges on a five element array from
the array normal direction where the elements are 32.8m
apart. The experiment was conducted at 11:00 on 26 De-
cember 2014 with the operating frequency of 15.8MHz. The
geometric layout of the experimental system is illustrated in
Fig. 1. To track the specific propagation path of each ray from
a given radar and beam direction, a 2D ray tracing technique
is used based on work in [12] and integrated using an adap-
tive Runge-Kutta numerical method. Ionospheric profiles are
generated by the latest International Reference Ionosphere
(IRI-2011) [13]. Figure 2 illustrates the ray-tracing result
where rays are assumed to be launched over an elevation
range from 5◦ to 55◦ at the selected operating frequency.
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Fig. 1. The geometric layout of experimental system.

Fig. 2. Ray tracing output of the experiment. The blue solid line
indicates the ray trajectory travelling from the transmitter
to the receiver.

As observed, the reflection happens at the height of
192 km in the ionospheric F region. The irregularities in
this area can be regarded as density structures within the
ionospheric plasma that are small compared to the scale size
of the overall ionosphere. Propagating through such fine ir-
regular structure, the correlation between closely-spaced ray
paths will be degraded. To illustrate this, Fig. 3(a) gives the
measured results of correlation coefficient for the signal am-
plitude, phase and combined amplitude-phase with respect
to the first antenna element. Herein, three typical correlation
associations are concluded from a number of experimental
observations. According to Fig. 3(a), types 1 through 3 il-
lustrate the intrinsic dependence of signal correlation against
the amplitude and phase. With regard to type 1 and 2, it
is seen that the correlation degradation of signal amplitude
has a little influence on the array sampled complex signal
(with both amplitude and phase). However, as observed in
type 3, significant spatial coherence loss between each ele-
ment can be easily spotted especially in the presence of phase
correlation reduction. Therefore, we could conclude that the
signal correlation has a stronger dependence on the phase
correlation than the amplitude correlation. Combined with
the correspondingMUSIC based DOA estimation result (128
snapshots are used) illustrated in Fig. 3(b), it is straightfor-
ward to notice that the spatial correlation reduction directly
results in the DOA performance degradation.
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Fig. 3. Illustrations of typical correlation measurement result
and the corresponding DOA estimation based onMUSIC
algorithm. A correlation coefficient of 0.7 is assumed as
the threshold indicating the correlation strength.
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To explain the result in Fig. 3(b), we consider q number
of narrowband stationary zero mean mutually uncorrelated
plane waves impinging on a uniform linear array (ULA) of
M elements and the array M × 1 vector observations can be
modeled as

x =

q∑
l=1

slal + n (1)

where

al =
[
1, · · · , e−j2π (i−1)d sin θl/λ, · · · , e−j2π (M−1)d sin θl/λ

]T

is the wavefront vector corresponding to the source direction
θl , l = 1, · · · , q, sl is the amplitude of the l-th source, n is
the zero mean white noise process, d is the element interval
and λ is the radar wavelength.

To involve the influence of wavefront distortions, al is
recast to consider the time varying wavefront fluctuation by
introducing the spatial perturbation function

f =
[
ε1ejϕ1, · · · , εMejϕM

]T

and thus
âl = al ◦ f (2)

where [ε1, · · · , εM ] and
[
ϕ1, · · · , ϕM

]
are the random am-

plitude and phase perturbation lumped into the wavefront
throughout each channel. Consider that each source has the
same spatial perturbation function and, in this case, the array
matrix is given by

R̃x = E
{
xxH

}

=

q∑
l=1

E
{
slsHl (al ◦ f ) (al ◦ f )H

}
+ σ2I

= *
,

q∑
l=1

E
{
slsHl ala

H
l

}+
-
◦ E

{
f f H

}
+ σ2I

= Rx ◦ F + σ2I

(3)

where σ2 is the noise variance, I is the identity matrix and
F is defined as the spatial coherence matrix characterizing
the coherence loss extent due to the properties of propagation
mediumwhich is primarily determined by the spatial correla-
tion function. In fact, (3) is a relatively simply model derived
on condition that each source is modulated by one same ran-
dom process and much more complicated circumstances are
discussed in the Appendix.

According to (3), the issue of angle spreading around the
true direction illustrated in Fig. 3(b) can find its explanation
through the spatial coherence matrix modulation. There-
fore, to yield the method for wavefront distortion correction,
a model is needed to explain the intrinsic perturbation mech-
anism.

3. Modeling and Correction of Wave-
front Distortion
As alluded to earlier, the correlation of signals sam-

pled at the wavefront has a much stronger dependency on
its phase correlation. Therefore, in what follows, the spatial
correlation function of perturbed phases for ionospherically
propagated HF radio wavefronts will be theoretically con-
structed and then a CM technique based method is derived
to eliminate the influence on the array covariance matrix
induced by the wavefront distortion.

3.1 A Spatial Coherence Model for Imperfect
Wavefronts
In general, the ionosphere is regarded as the inhomoge-

neous and non-stationary medium. The ionospheric irregu-
larity component captured as the density structure within the
ionospheric plasma will impart a random fluctuation on the
wavefront and thus reduce the correlation between closely-
spaced ray paths. To study this effect, the spatial correlation
function of ionospheric perturbed phases is derived in the
following part.

To facilitate the analysis and calculation, we ignore the
influence of geomagnetic field and collisions and thus yield
the basic dispersion relationship of electromagnetic waves
expressed by (4) combined with the Appleton-Hartree for-
mula [14]

N2 =
c2k2

ω2 = 1 −
ω2

p

ω2 (4)

where N is the index of refraction. ωp , defined as ωp =

e2n/(ε0m0), is electron plasma frequency, e is the charge on
an electron, m0 is the electron mass, n is the total ionosphere
plasma density profile, ε0 is the permittivity of free space, c is
the velocity of light and k is radar wave number. Afterwards,
we consider a Cartesian system of coordinates, with x east,
y north and z vertical. In the ionosphere, n is a function of
space which is assumed as linearly increased with altitude z
independent of the horizontal coordinate (x, y) and thus

ω2
p (z) = ω2 z

zt
. (5)

Further, the phase accumulated along a path to a single
scattering event on the ground can be estimated by

ϕ =

∫
kz (n) dz. (6)

Following [15], n is reckoned as the combination of the
quiescent background part n0 and an irregular part n1, i.e.
n = n0 + n1. Combined with such relationship, we use the
Taylor series expansion of kz (n) at n = n0 up to the first
order term and we have

kz (n) ≈ kz (n0) +
∂kz
∂n

n1. (7)
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Substituting (7) into (6), the accumulated phase involv-
ing the irregularity influence can be calculated by

ϕ1 (x, y) = −reλ
∫ zt

0

n1 (x, y, z)
√

1 − z/zt
dz (8)

where re = e2/
(
4πε0m0c2

)
is the classical electron radius

(≈ 2.8 × 10−15 m), zt is the height corresponding to the re-
flection and zt = 0 indicates the bottom of the ionosphere.

Based upon (8), the spatial autocorrelation function over
the horizon plane (x, y) is estimated by the ensemble average
of ϕ1

Rϕ1 (X,Y ) =
〈
ϕ1 (x + X, y + Y ) ϕ∗1(x, y)

〉
= (reλ)2

∫ zt

0

∫ zt

0

Rn1

(
X,Y, z − z

′
)

√
(1 − z/zt )

(
1 − z′/zt

) dzdz
′
. (9)

To estimate Rϕ1 , we let u =
(
z − z

′
)
/zt and v =(

z + z
′
)
/zt so that the Jacobian determinant is J (u, v) =

∂
(
z,z
′ )

∂(u,v) = 1/
������

∂u
∂z

∂u
∂z
′

∂v
∂z

∂v
∂z
′

������
=

z2
t

2 . Therefore, (9) can be re-

duced into (10) with Z = ztu

Rϕ1 (X,Y ) =
(reλzt )2

2

∫ 1

−1
Rn1 (X,Y, Z ) ln

1
|u|

du

=
zt (reλ)2

2

∫ ∞

−∞

Rn1 (X,Y, Z ) ln
zt
|Z |

µ (zt − |Z |)dZ

(10)

where µ (·) is the unit step function. Using the Fourier trans-
form implementation of (10), the perturbed phase spectrum
is yielded by

Sϕ1

(
κx, κy

)
=

zt (reλ)2

2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

Rn1 (X,Y, Z )

× ln
zt
|Z |

µ (zt − |Z |) e−jκxX−jκyYdXdYdZ

=
(λrezt )2

2

{
1

2π
Sn1

(
κx, κy, κz

) κz
∗

2
κz zt

Si
(
κz zt

)}�����κz=0

≈
(λrezt )2

2π
Sn1

(
κx, κy, κz = 0

)
.

(11)

Invoking (10) and (11), it is seen that Rϕ1 can be de-
termined when Sn1 is specified. Herein, the fourth order
power law spectrum in [16] is exploited so that Rϕ1 is finally
calculated by taking the inverse Fourier transform implemen-
tation of (11). In lieu of a direct measurement of correlation,
the complex signal form containing the perturbed phases is
considered to measure the correlation strength

RAc (X,Y ) =
〈
e−jϕ1(x,y)+jϕ1(x+X,y+Y)〉

= eRϕ1 (X,Y )−〈ϕ2
1〉

. (12)

0 20 40 60 80 100 120 140

Distance (m)

0.7

0.75

0.8

0.85

0.9

0.95

1

C
or

re
la

tio
n 

co
ef

fic
ie

nt

Fitting parameters:
Model (13)
< ϕ2

1
>= 1.0899

κ0 = 0.0069 m
−1

Model (14)
σϕ = 0.043

Model (13)
Model (14)
Average measured result

Fig. 4. Spatial correlation model comparison between (13), (14)
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Substituting the calculation result of Rϕ1 into (12), we have

RAc (ρc) ≈ 1 +
〈
ϕ2

1

〉 κ2
0ρ

2
c

π
ln
κ0ρc

2
(13)

where
〈
ϕ2

1

〉
represents the mean-square phase fluctuation, κ0

is the ionosphere outer scale parameter and ρc indicates the
correlation distance in space.

Resorting to (13), it is a physics-based model where the
parameters primarily depend on the mean square phase fluc-
tuation magnitude and the outer scale length of the plasma
density irregularities. As for the de facto condition, it is
difficult to get these parameters because they are generally
obtained from the experimental observations from radar, in
situ, and satellite. Therefore, a simplified model of (13) is
needed. To this end, we consider a wavefront model on the
basis of two assumptions: 1) the amplitude remains con-
stant and the phase follows the independent and identically
distributed zero mean Gaussian process with the phase vari-
ance σ2

ϕ and 2) the correlation function subjects to a strictly
decreasing of the separation distance. By doing this, the
correlation between the i th and m th sensor is determined by

R̂Ac |(i − m) | = e−σ
2
ϕ |(i−m) | (14)

and thus the spatial coherence matrix in (3) is reasonable to
be calculated by

F =



1 e−σ
2
ϕ · · · e−σ

2
ϕ (M−1)

e−σ
2
ϕ 1 · · · e−σ

2
ϕ (M−2)

...
...

. . .
...

e−σ
2
ϕ (M−1) e−σ

2
ϕ (M−2) · · · 1



(15)

where F is a real-valued symmetric Toeplitz positive definite
matrix. To verify the rationality of the simplified model (14),
Fig. 4 illustrates the model fitting result based on least square
method between (13), (14) and the average measurement of
500 independent statistical tests of the real radar data. As
noticed, the model of (14) is a decent tradeoff between the
complexity and accuracy and can also agree well with the
theoretical and measured results.
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3.2 Wavefront Correction Using Covariance
Matching Approach
Resorting to (3), it follows that the problem of wave-

front correction is recast as demodulating the influence of the
spatial coherence matrix. In order to address this problem,
the CM technique [10], [11] is used. To explain this, we
denote the corrected array covariance matrix as

R̂x = R̃x∅F . (16)

The cost function is given by
Er (Θ) = R̃x∅F − Rx


2
F

(17)

where Θ is the vector space of unknown parameters. The
required estimates of parameters will be chosen by making
the cost function (17) to the minimum in the least square fit
sense and (17) is equivalently reduced into

Θ̂0 = arg min
Θ

tr
{(

R̃x∅F − Rx

)2}
. (18)

From (18), it is seen that the parameters are estimated
through the multidimensional search over Θ. To reduce the
search dimension, a dimension-reduced optimization target
function of (18) is given by (19) (at the bottom of this page).
In (19), PA = AA†, P⊥A = I − PA, A† =

(
AH A

)−1
AH ,

A =
[
a1, · · · , aq

]
M×q

is the matrix of wavefront vectors
corresponding to each source. By doing this, the finally
obtained set of estimated parameters can be reduced from(
q2 + q + 2

)
×1 to

(
q + 1

)
×1. To determine the

(
q + 1

)
×1

parameters, particle swarm optimization (PSO) algorithm
[17] is used to solve this multidimensional parameter estima-
tion problem for its low computational effort and rapid global
convergence.

4. Simulation and Experiment

In simulations, a ULA of 16 elements with half wave-
length interelement spacing is used. Two conditions cor-
responding to a single source and two uncorrelated equi-
powered sources are considered with signal-to-noise SNR =
20 dB. The array covariance matrix is estimated with the
number of 32 snapshots. The phase variance of the distorted
wavefront is σ2

ϕ = 1 ( σ2
ϕ is also renamed as the coherence

parameter whose magnitude indicates the extent of coher-
ence loss) and the spatial coherence matrix F is constructed
according to (15).
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Fig. 5. Simulated results of DOA estimation with corrected
wavefronts based on the proposed method.

According to the simulated results in Fig. 5, it is straight-
forward to notice that angle spreading and deviation around
the true direction are the most significant effects triggered by
the distorted wavefront. With the proposed method, the im-
perfect wavefront is well restoredwhich can be verified by the
noticeable performance improvement of MUSIC algorithm.
Inspiringly, the present method can be further developed to
suppress the covariancematrix tapering influence in 2D space
time adaptive processing [9].

The performance of PSO method is illustrated in Fig. 6.
For comparison, the genetic algorithm (GA) in [10] is con-
sidered. Table 1 and Tab. 2 give the parameters applied for
these two algorithms. Figure 6(a) shows the distribution of
target function (19) over the parameter searching range. It is
seen that the target function has a global minimization value
at the true DOA direction and coherence parameter. Differ-
ent from [7], any priori knowledge of F is not required to
be given and all parameters will be yielded simultaneously
once (19) converges to the global minimum. According to
Fig. 6(b), it illustrates the convergence performance between
PSO and GA algorithms against the number of iterations.
Comparatively, PSO algorithm can converge to the optimal

Θ̂0 = arg min
Θ

tr
{(

R̃x∅F − PA

(
R̃x∅F −

1
M − q

tr
{
P⊥A

(
R̃x∅F

)}
I
)

PA −
1

M − q
tr

{
P⊥A

(
R̃x∅F

)}
I
)2



= arg min
Θ

tr



(
R̃x∅F − PA

(
R̃x∅F

)
PA −

1
M − q

tr
{
P⊥A

(
R̃x∅F

)
P⊥A

})2


. (19)
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solution in much smaller iterative steps and thus appears to
be more appropriate for the requirement of real-time process-
ing. In addition, the fast convergence performance makes the
proposed method reasonable to be applied for dealing with
more complicated scenarios discussed in the Appendix.
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Fig. 6. Illustration of the target function (19) of (a) and con-
vergence performance comparison of (b) between GA
method and PSO method.

Parameter Value
Swarm size 20
Iterations 50
Cognitive acceleration 1.49445
Social acceleration 1.49445
Inertia weight at the start of PSO run 1
Inertia weight at the end of PSO run 0.1
Maximum velocity along any dimension 1

Tab. 1. Parameters for PSO.

Parameter Value/Method
Population size 20
Generations 50
Crossover rate 0.8
Mutation rate 0.001
Selection method Stochastic uniform selection

Tab. 2. Parameters for GA.
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Fig. 7. Experimental result of DOA estimation with corrected
wavefronts based on the proposed method.

As shown in Fig. 7, the validity of the wavefront cor-
rection method is verified by the real radar data. Here, we
assume that themeasured result of correlation coefficient cor-
responds to Type 3 in Fig. 3(b). As observed from this case,
the received wavefront signal has an evidently degraded cor-
relation between each antenna element. With the proposed
wavefront correction method, it is seen that the output of
conventional MUSIC spectrum has been improved to the
condition where only the amplitude distortion is left to be
corrected on the wavefront.

5. Conclusions
In the present paper, special attention has been paid

to correct the distorted wavefronts of ionospherically propa-
gated HF radio signals so as to enhance the performance of
conventional MUSIC algorithm. To study the influence on
the array covariance matrix due to the imperfect wavefront,
the spatial coherence matrix is constructed with a reason-
ably simplified spatial correlation function. On the basis of
CM technique, the distorted array covariance matrix can be
restored by eliminating the influence induced by the spatial
decorrelation of the received wavefront signals. In the end,
simulation and experimental radar data have demonstrated
the effectiveness of the proposed method.

Futureworkwill study the amplitude fluctuationmecha-
nism on the wavefront as well as the corresponding technique
to restore the array covariance matrix.
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Appendix
Assume that an observed zero mean vector x corre-

sponding to one far field source has been modulated by s
mutually uncorrelated randomprocesses f1, f2, · · · , fs as fol-
lows

x̂ = x ◦ f1 ◦ f2 ◦ · · · ◦ fs .

Therefore, the corresponding covariance matrix is Rx̂ x̂ =

E
{
x̂ x̂H

}
. As for the i j th element in the Rx̂ x̂ , it is given by

ri j = E
{
xi f1i f2i · · · fsi x∗j f ∗1j f ∗2j · · · f ∗s j

}

= E
{
xi x∗j

}
E

{
f1i f ∗1j

}
E

{
f2i f ∗2j

}
· · · E

{
fsi f ∗s j

}
.

It should be noted that the factoring of the expec-
tation operator is allowed because of the assumption that
x, f1, f2, · · · , fs are mutually uncorrelated. Thus Rx̂ x̂ can be
finally calculated by

Rx̂ x̂ = Rxx ◦ F1 ◦ F2 ◦ · · · ◦ Fs

= Rxx ◦ F̂

where F̂ = F1 ◦ F2 ◦ · · · ◦ Fs is the Schur-Hadamard product
of individual spatial coherence matrices.


