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Abstract. Location of poles and zeroes greatly affect phase
response and magnitude response of a system. Recently,
pole-zero optimization emerged as an effective approach to
approximately match magnitude response of a system with
that of an ideal one. In this brief, a methodology for the de-
sign of linear phase integrators and ones with constant phase
of −90 degree is proposed.

The aim of this method is to simultaneously attain multi-
ple objectives of magnitude and phase optimization. In this
method, magnitude response error is minimized under the
constraint that the maximum passband phase-response er-
ror is below a prescribed level. Examples are included to
illustrate the proposed design technique.
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1. Introduction
An integrator is a system whose output signal is the

time integral of its input signal. It can be mathematically
modelled as,

Hi (ω) = 1/jω

where j =
√
−1 and ω is the angular frequency in radians per

second. Integrators find immense applications in the areas
of signal processing, bio-medical engineering, radar engi-
neering, sonar engineering, control system etc. Multitude of
techniques have been developed for the design of recursive
and non-recursive digital integrators. It is interesting to note
that for linear phase integrators, Maximum Percentage Rel-
ative Error (MPRE) in magnitude response has rolled down
from 5% to 0.48% in the decade 2005 − 2015.

Several designs of digital integrator have been proposed
in the literature [1–7]. Among these, the simplest approxi-
mations to the desired frequency response are Rectangular,
Trapezoidal and Simpson digital integrators. It can be easily

noticed that, as ω → 0, H (ejω) → 1/jω for these approx-
imations. These digital integrators can be sufficient for the
integration of oversampled signals (signals sampled much
above the Nyquist rate), but a deeper investigation suggests
that there is still a possibility of better designs for signals that
are critically sampled at the Nyquist rate.

Digital integrators have been designed using quadrature
rules, such as the Newton-Cotes and Gauss- Legendre rules
by Ngo and Tseng [3–6]. These methods, however, are com-
plex to design and implement due to the usage of fractional
sampling rates, hence lacking computational efficiency. La-
grange interpolators have been suggested to elevate some of
these problems. Most recently Tseng et al. have proposed
to implement the fractional delays in the Hartley transform
domain [7].

One of the design methods which has become very
popular among researchers is Iterative Optimization Method
[8–20]. It is widely used to improve the performance of
a system by reducing its runtime, bandwidth, memory re-
quirement, or some other property. Optimization methods
such as Linear Programming, Simulated Annealing, Genetic
Algorithm, and Pole-Zero optimization have been used ear-
lier to design Infinite Impulse Response (IIR) digital integra-
tors and differentiators. Papamarkos-Chamzas [8] have used
Linear Programming optimization method to design digital
integrators. Al-Alaoui [9] has also proposed a family of
digital integrators by using interpolation and Simulated An-
nealing optimization method. Upadhyay-Singh (US) have
proposed recursive wideband digital integrator for 0.48%
MPREs in magnitude responses over almost the full Nyquist
band except near to ω = π [10]. Genetic Algorithm has
been exploited in [16] to obtain a class of second order linear
phase integrators. In [17], Jain-Gupta-Jain have used Mini-
max and Pole, Zero, and Constant Optimization Methods to
obtain second, third and fourth order IIR digital integrators.
Later, in [18], Gupta et al. (GET) have proposed recursive
wideband digital integrators using Modified Particle Swarm
Optimization (MPSO). In [19], Jalloul and Al-Alaoui have
employed Particle SwarmOptimization to propose designs of
integrators and differentiators. Upadhyay, in [20], has used
Pole-Zero Optimization to achieve integrators with relative
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error in magnitude response not exceeding 0.37%. In [21],
efficient design of FIR digital differentiator using the L1-
optimality criterion is proposed.

Often application in controls, wave shaping, oscilla-
tors and communication require a constant 90° phase for
differentiators and −90° phase for integrators. In [22], Al-
Alaoui cascaded differentiator and integrator operator with
fractional advance and delay respectively to obtain constant
90° phase for differentiators and constant −90° phase for in-
tegrators. Al-Alaoui also showed that doubling the sampling
rate improves the magnitude response. Combining the two
actions improves both the magnitude and phase responses. It
should be noted that the approach applies to other differen-
tiators and integrators with linear phases, or approximately
linear phases, such as the second-order Al-Alaoui integrators
and differentiators. However, the approach is limited only
to linear phase differentiator and integrator. Also, fractional
delays and advances are complex to implement. In this brief,
our goal is to improve the performance and computational
efficiency of digital integrators as a standalone system.

Iterative constrained optimization has already been
proven a superior method of obtaining close-to-perfect mag-
nitude responses. However, cost function defined in these
methods only considers magnitude error with no account of
phase error. For real-time applications, further reduction in
magnitude error is not as important as reduction in phase
error is.

Every recursive digital filter can be completely speci-
fied by its poles and zeros with suitable scaling. Poles and
zeros give useful insights into a filter’s frequency response,
and can be used as the basis for digital filter design. This
paper attempts at developing a design method which governs
constraints on the location of poles and zeroes in order to
achieve multi-objectives of phase and magnitude responses,
both together.

The rest of the paper is organized as follows. Section 2
gives a brief account of problem under consideration. Solu-
tion Methodology is developed in Sec. 3. Design Steps are
presented in Sec. 4. Design Examples are given in Sec. 5
of the paper. In Sec. 6, Performance Results are elucidated.
Conclusions are drawn in Sec. 7.

2. Problem Formulation
The paper addresses two design objectives. Firstly, the

design of stable recursive linear phase digital integrator and
secondly, the design of stable recursive digital integrator with
a constant phase of −90°. These designs, however, involve
non-converging objectives of magnitude and phase optimiza-
tion and there exist a trade-off among the different objectives.
The trade-off parameters considered in the designs are: pass-
band magnitude error and passband phase deviation, pass-
band cut-off frequency in phase response (ωp): which is
defined as range of frequency for which phase deviation ≤ δ.

Design objectives for linear phase integrators can hence be
summarized as:

1. Low wideband magnitude error

2. Low passband phase deviation (constant group de-
lay)

Design objectives for integrators with constant phase of −90°
are given below:

1. Low wideband magnitude error

2. High Passband cut-off frequency in phase response

3. Low passband phase deviation

Let, Hl (z) denotes the transfer function of linear phase inte-
grator and Hc (z) denotes the transfer function of integrator
with constant phase of −90°.

A generalized digital recursive transfer function of second
order is of the form, given in (1).

I (z) = Io
(z − z1)(z − z2)
(z − p1)(z − p2)

(1)

where z1, z2 are zeroes and p1, p2 are poles of the considered
transfer function. Here, Io is a multiplier constant or scal-
ing factor. The frequency response I (ejω) of the considered
system can be written as in (2),

(ejω) = |I (ejω) |ejθ (ω) = Io

∏2
i=1 |Ii (e

jω) |ejφi (ω)∏4
i=3 |Ii (ejω) |ejφi (ω)

(2)

where |I (ejω) | and θ(ω) are the magnitude and phase re-
sponse of the digital integrator. |I1(ejω) |, |I2(ejω) |, |I3(ejω) |,
|I4(ejω) | and φ1(ω), φ2(ω), φ3(ω) , φ4(ω) are the magnitude
responses and phase characteristics of z1, z2, p1, p2 respec-
tively. Now, phase response of the overall transfer function
is given as, θ(ω) = φ1(ω) + φ2(ω) − φ3(ω) − φ4(ω).

Error function to be minimized is given in (3).

E =
∫ π

0

(
���I (ejω)��� −

1
ω

)2
dω. (3)

The main reason for expressing the magnitude constraints in
terms of magnitude-square instead of magnitude is to avoid
the appearance of a denominator for the gradients of the mag-
nitude constraints, which the use of the simple magnitude
would have made unavoidable.

A necessary and sufficient condition for the stability of
a causal Linear Time Invariant (LTI) digital IIR filter is
that all poles of its irreducible transfer function lie strictly
inside the unit circle.

3. Solution Methodology
Consider a polynomial equation x = (z − a), where

a ∈ R. Substituting z = ejω , we get phase of x, given in (4).

φx (ω) = tan−1 sinω
cosω − a

. (4)
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Fig. 1. Illustration of phase effects of zeroes and poles to obtain
linear phase characteristics for a system.

location of root φx (ω) |ω=0 φx (ω) |ω=π
a > 1 π 0
a < −1 0 −π

a = 1 π/2 0
a = −1 0 −π/2

Tab. 1. Values of φx (ω) for different root locations.

Groupdelay of x is defined as:

τx (ω) = −
dφx (ω)

dω
= −

1 − a cosω
(1 − a cosω) + a(a − cosω)

. (5a)

From (5a), it is noted that:

lim
a→∞

τx (ω) = 0. (5b)

Therefore, indicating that greater the value of a, better
the phase linearity of the system.

We next require to compute values of φx (ω) at extreme
frequency points in the Nyquist Band (i.e. at ω = 0 and at
ω = π) for different locations of root. Table 1 summarizes
values of φx (ω) for different root locations.

3.1 Design of Linear Phase Integrators
Figure 1 illustrates the phase effects of zeroes and poles

to obtain linear phase characteristics for a discrete time sys-
tem. It is observed from this figure that in order to have
a linear phase response for a system with transfer function
Hl (z), phase function of one of the poles p1, i.e, φ3(ω) should
be equal to 90° at ω = 0 and decrease monotonically hence-
forth with constant slope for the complete range of Nyquist
frequency. Another pole p2 should be located strictly inside
the unit circle to satisfy stability constraints for the system.
One of the zeroes z2 should be so chosen that it neutralizes the
phase effects of p2. The phase response of zero z1, i.e, φ1(ω)
is required to be monotonically decreasing, linear function
of frequency with slope much greater than that of φ3(ω),
so that, when phase characteristic of p1 is subtracted from
that of z1, i.e, φ1(ω) − φ3(ω), linear phase characteristic is
obtained for the overall transfer function Hl (z).

Based on this, required phase response of p1 can be
mathematically modelled by the following conditions:

1. φ3(ω) |(ω=0) = π/2,

2. φ3(ω) |(ω=π) = 0,

3. ���
d

dω φ3(ω)��� =
1
2 .

From Tab. 1, it is observed that for pole location z = 1, first
two of the above mentioned conditions are fulfilled.

Differentiating φ3(ω), we get

dφ3(ω)
dω

=
1 − a cosω

1 + a2 − 2a cosω
.

Put a = 1 �����
dφ3(ω)

dω
�����
=

1
2

which satisfies the third condition.

Hence, it is concluded that pole p1 is located at z = 1. Iso-
lated poles on the unit circle may be called marginally stable.
The impulse response corresponding to a single pole on the
unit circle never decays, but neither does it grow.

Next, constraints on phase function of z1 are described be-
low:

1. φ1(ω) |(ω=0) = 0 ,

2. τ1(ω) = constant (for phase linearity).

For the first condition to hold true, zero z1 can take any value
in the interval (−∞,−1), as concluded from Tab. 1. Assume
z1 lies in the interval (−α,−1). Solution for α can be obtained
by solving the equation:

τx (ω) |x=α,ω=0 = κ κ ∈ (0, 1), (6)

κ = 1 results into a perfect linear phase response while κ = 0
leads to a constant phase response of −90°.

Different solutions of α can be obtained for different
defined values of κ.

An LTI filter is stable if and only if its poles are strictly
inside the unit circle (|z | = 1 ) in the complex z plane. In
particular, a pole p outside the unit circle (|p| > 1 ) gives
rise to an impulse-response component proportional to pn

which grows exponentially over time n. Therefore, pole p2
must lie in the interval (-1,1). To achieve linear phase char-
acteristics for the system, p2 and z2 should lie close enough
to each other. Let ∆p be the distance between the two. For
faithful neutralization of the two phase effects, |∆p| should
not exceed 0.1

In conclusion, to obtain linear phase characteristics for a
second order system, p1 should be located at z = 1. p2 should
lie in the interval (-1,1). z2 = p2 + |∆p|, where |∆p| does not
exceed 0.1. z1 should lie in the interval (−α,−1) where α is
linearly related to user-defined parameter κ.
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3.2 Design of Integrators with Constant Phase
of −90°
Now that we have estimated location of poles and zeroes

of Hl (z) to obtain linear phase characteristics for the system,
we would now like to investigate location of poles and zeroes
to achieve a constant phase response of −90° for a system
with transfer function Hc (z). Let z′1, z′2, p′1 and p′2 denote
the zeroes and poles of Hc (z).

From Fig. 1, it is observed that a positive angular shift
of 26.56° in phase response of Hl (z) causes its linear phase
characteristics to transform into a constant phase character-
istics of −90° . It can henceforth be argued that cumulative
sum of angular phase shifts contributed by poles and zeroes
of Hc (z) should be equal to 26.56°.

Let,

1. ∆1 be the positive angular phase shift caused by z′1,
measured w.r.t φ1(ω) (see Fig. 1)

2. ∆2 be the negative phase shift caused by z′2, measured
w.r.t frequency axis.

3. ∆3 be the negative phase shift caused by p′1, measured
w.r.t −φ3(ω).

4. ∆4 be the positive phase shift caused by p′2, measured
w.r.t frequency axis.

It is to be noted that phase function of pole p′1 suffers the
same constraints as p1 and it continues to be located at z = 1.
Hence, ∆3 = 0.

Now, summation of phase shifts caused by z′1, z′2 and p′2
should be equal to 26.56°, given by (7),

|∆1 | − |∆2 | + |∆4 | = 26.56° + ∆ (7)

where ∆ is tolerable angular phase shift. At first, consider
|∆2 | and ∆ small enough to be neglected. So, (7) becomes,

|∆1 | + |∆4 | = 26.56°. (8a)

In (8a), z′1 ≥ −1. So, maximum value of ∆1 is achieved when
z′1 is located at z = −1.

max(|∆1 |) = 18.44° (8b)

This implies that

min(|∆4 |) = 8.12°. (8c)

Relationship between root location a and correspond-
ing maximum angular phase deviation (∆) caused by it is
derived as follows:

Maximum Angular Phase Deviation (∆) can be defined as
slope of a tangent to the phase response curve at ω = 0. By
above definition,

dφx (ω)
dω

�����ω=0
= ∆. (9)

Similarly, relationship between root location a and cor-
responding maximum deviation caused (δ) by it is derived as
follows:

Maximum Phase Deviation (δ) can be defined as the value
of phase obtained at a stationary point on the phase curve at
which the tangent changes from a positive value on the left
of this point to a negative value on the right.

Solving for ω in the equation dφx (ω)
dω = 0 we get

1 − a cosω
1 + a2 − 2a cosω

= 0

⇒ a =
1

cosω
⇒ ω = cos−1(1/a).

By definition
φx (ω) |ω=cos−1 (1/a) = δ. (10a)

This gives us

tan−1 sin(cos−1(1/a))
(1/a) − a

= δ. (10b)

Solution of (9) and (10b) gives relationship between ∆ and δ.

For ∆ = 8.12°, solving (9) a comes out to be −0.3. This
implies that pole p′2 is located at z = −0.3

As location of zero z′1 goes beyond z = -1 (towards −∞), |∆1 |
decreases requiring |∆4 | to increase and pole to shift beyond
z = −0.4 (towards -1). Equation (8) suggests that |∆4 | can
not exceed 26.56°. This marks maximum bound on |∆4 |.
This is achieved when pole p′2 is located at z = −0.6. Hence,
pole p′2 is restricted to be located in the interval (−0.6,−0.3).

Practically, neither ∆ nor |∆2 | can be 0. From (7), we con-
clude the following:

max(|∆1 | − |∆2 |) = 18° + ∆, (11)
min(|∆1 | − |∆2 |) = ∆. (12)

From above analysis, we investigate that p′1 is located at
z = 1. p′2 lies in the interval (−0.6,−0.3). z′1 lies in the
interval (−β,−1) and z′2 lies in the interval (−γ, 0).

For different values of δ (and hence ∆) chosen, different
solution sets for (β, γ) can be derived.

4. Design Approach
The typical approach in designing of a digital IIR inte-

grator is to minimize the maximum amplitude-response error
and maximum phase-response error. The optimization can
be carried out by minimizing the magnitude error under the
constraint that the passband phase error δ is within prescribed
level.

Iterative optimization methods are often the only choice
for non linear equations. It is a mathematical procedure that



380 K. GARG, D. K. UPADHYAY, DESIGN OF SECOND ORDER RECURSIVE DIGITAL INTEGRATORS WITH MATCHING PHASE . . .

generates a sequence of improving approximate solutions
until convergence is reached. Genetic Algorithm (GA) is
already used in the literature for designing digital differentia-
tors and integrators [13]. In this work, GA is used in a similar
fashion as in [13]. However, the optimization works on opti-
mizing the gain factor and the locations of poles and zeroes
of the digital filter as opposed to optimizing the coefficients
of the numerator and the denominator.

Steps followed in the design of Hl (z) and Hc (z) are
given below:

Step 1: For the design of Hl (z), define a value of κ. Then,
solution of (6) gives the value of α.

For the design of Hc (z), choose a required value for δ.
Simultaneous solution of (9), (10) and (11) yields solution
set for (β, γ).

Step 2: Run the iterative optimization with poles and zeroes
set to vary within the respective prescribed intervals for both
the designs, as discussed in previous section. Cost function
is given in (3). The optimization runs until convergence is
reached.

The constraints on the location of poles and zeroes en-
sure that the phase-response error is under a prescribed level.
The frequency range is defined as 0 ≤ ω ≤ π radians/second.

5. Design Examples
In real world applications, most of the optimization

problems involve more than one objective to be optimized.
The objectives in most of engineering problems are often
conflicting. In the case, one extreme solution would not
satisfy both objective functions and the optimal solution of
one objective will not necessarily be the best solution for
other objective(s). Therefore, different solutionswill produce
trade-off between different objectives and a set of solutions is
required to represent the optimal solutions of all objectives.
Several design examples are included which demonstrate the
effectiveness of the design technique.

5.1 Linear Phase Integrators
In this section, three designs of linear phase digital

integrators have been considered for different values of κ.
Figures 2 and 3 illustrate the magnitude and phase responses
of proposed integrators Hl1−l3(z).

Example 1: κ = 0.8

Solving (6) for κ = 0.8, α comes out to be 5. Proposed
integrator is given in (13).

Hl1(z) = 0.1518
z2 + 5.4866z + 2.5897
z2 − 0.4521z − 0.5479

. (13)

The design has poor magnitude response and lacks phase
linearity.

Fig. 2. Magnitude responses of proposed integrators Hl1−l3 (z).

Fig. 3. Phase responses of proposed integrators Hl1−l3 (z).

Example 2: κ = 0.95

Solving (6) for κ = 0.95, α comes out to be 20. Proposed
integrator is given in (14).

Hl2(z) = 0.05578
z2 + 15.5885z + 8.4692
z2 − 0.5361z − 0.4639

. (14)

The design out performs other linear phase design exam-
ples proposed in this section in terms of phase linearity over
the full Nyquist band and has reasonably well magnitude
response for complete Nyquist frequency range.

Example 3: κ = 0.9

Solving (6) for κ = 0.9, α comes out to be 10. Proposed
integrator is given in (15).

Hl3(z) = 0.08504
z2 + 10.5789z + 5.8587
z2 − 0.4929z − 0.5071

. (15)
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Fig. 4. Magnitude responses of proposed integrators
Hc1−c3 (z).

Fig. 5. Phase responses of proposed integrators Hc1−c3 (z).

The design outperforms other design examples in terms of
magnitude response and also has considerably good phase
response over wideband.

5.2 Integrators with Constant Phase of −90°

This section demonstrates three designs of integrators
with constant phase of −90° for different values of tolerable
maximum phase deviation δ. Figures 4 and 5 show the mag-
nitude and phase responses of designed integrator Hc1−c3(z).

Example 1: δ = 2°

For δ = 2°, β and γ are found to be -1.05 and -0.6 respec-
tively. Proposed integrator is given in (16).

Hc1(z) = 0.7679
z2 + 1.5715z + 0.5560
z2 − 0.4204z − 0.5796

. (16)

Phase deviation for this design does not exceed 2° in the fre-
quency range 0 ≤ ω ≤ 0.88π. So, cut-off frequency in phase
response (ωp) turns out to be 0.88π. The design, however,
can not be considered magnitude efficient with Maximum
Magnitude Relative Error (MMRE) of 0.5025 over wide-
band.

Example 2: δ = 5°

For δ = 5°, β and γ come out to be -1.9 and -0.2 respectively.
Proposed integrator is given in (17).

Hc2(z) = 0.5089
z2 + 1.9341z + 0.2312
z2 − 0.4902z − 0.5098

. (17)

The design has considerably accurate magnitude response
within δ = 5° in phase response in the frequency range
0 ≤ ω ≤ 0.69π. Here, ωp comes out to be 0.69π, making it
attractive for real-time applications.

Example 3: δ = 10°

For δ = 10°, solution of β and γ are found to be −2.3
and −1.8. Proposed integrator is given in (18).

Hc3(z) = 0.4857
z2 + 1.8514z + 0.1751
z2 − 0.4976z − 0.5024

. (18)

The design excels in magnitude response and has δ = 10° in
phase response in the frequency range 0 ≤ ω ≤ 0.76π. ωp

for this design is 0.76π

Though, it is disappointing that none of the design ex-
ample achieves a constant phase response of −90° over full
Nyquist band, it is worth noticing that passband cut-off fre-
quency ωp or bandwidth of the system largely depends on
location of zero z′1. The dependence is depicted below:

φ1(ω) |ω=ωp = −90°.

For a given location of z′1, approximate passband for the sys-
tem could be predicted. Conversely, location of z′1 could be
determined for a prescribed value of ωp .

6. Performance Measure
SA is another popular optimization technique that is

widely used in the literature for obtaining designs for integra-
tors and differentiators [9]. In this work, SA is implemented
to simulate integrators proposed in this section. Hl1(z) and
Hc2−c3(z) are used as initial guess in the optimization algo-
rithm.

Designs of digital integrators proposed using SA are of
the general form, as given in (19).

H (z) = ko
z2 + aoz + a1

z2 + boz + b1
. (19)

Proposed linear phase integrators are tabulated in Tab. 2
and ones with constant phase of −90° are tabulated in Tab. 3.

To verify the accuracy of proposed linear phase integra-
tors, recently published Jain-Gupta-Jain [16], H2MO+PZC(z)
[17] , Gupta et al. [18] and Upadhyay recursive digital inte-
grators are considered. Their transfer functions are given in
(20–23), respectively.
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Integrators ko ao a1 bo b1
Hl4(z) 0.09522 9.66190 5.19090 −0.49750 −0.50250
Hl5(z) 0.08515 10.57370 5.81810 −0.50220 −0.49780
Hl6(z) 0.08506 10.54160 5.48710 −0.54160 −0.45840
Hl7(z) 0.08860 10.07480 5.39990 −0.48330 −0.51670

Tab. 2. Coefficients of proposed linear phase integrators obtained using SA.

Integrators ko ao a1 bo b1
Hc4(z) 0.5068 1.8037 0.1678 −0.4924 −0.5076
Hc5(z) 0.4875 1.8312 −0.5032 0.2274 −0.4968
Hc6(z) 0.5246 1.9445 0.2629 −0.4488 −0.5512

Tab. 3. Coefficients of proposed integrators with constant phase of -90 degree obtained using SA.

Fig. 6. Magnitude responses of proposed and the existing linear
phase integrators with the ideal integrator.

HJGJ(z) = 0.0868
z2 + 0.9148z + 0.5122
z2 − 0.4881z − 0.5107

, (20)

H2MO+PZC(z) = 0.8655
z2 + 0.6933z + 0.0623
z2 − 0.4834z − 0.5151

, (21)

Hget(z) =
0.0901z2 + 0.9216z + 0.5429

z2 − 0.4445z − 0.5543
, (22)

Hup(z) = 0.8642
z2 + 0.6848z + 0.0577
z2 − 0.4930z − 0.5070

. (23)

And as a comparison benchmark for proposed recur-
sive integrators with constant phase of −90°, Ngo [3] and
Tseng [5] recursive digital integrators are considered. Their
transfer functions are given in (24) and (25), respectively.

HNgo(z) =
9 + 19z−1 − 5z−2 + z−3

24(1 − z−1)
, (24)

Fig. 7. Phase responses of proposed and the existing linear phase
integrators with the ideal integrator.

Integrators Max δ max MRE
Hl3(z) 3.6089 0.0273
Hl4(z) 3.4775 0.0433
Hl5(z) 3.9078 0.0341
Hl6(z) 3.7995 0.0398
Hl7(z) 3.8579 0.0580
HJGJ(z) 38.4682 0.2153
H2MO+PZC(z) 45.0071 0.2909
Hget(z) 37.6768 0.2082
Hup(z) 10.4348 0.0149

Tab. 4. Max Phase Deviation (in degrees) and Max MRE of
linear phase integrators.

HTseng(z) =

z
−3693 + 67260z−1 + 88650z−2 − 14388z−3 + 2139z−4

139968(1 − z−1)
.

(25)

Figures 6 and 7 show themagnitude and phase responses
of proposed linear phase integrators Hl3−l7(z), HJGJ(z),
H2MO+PZC(z), Hget(z), Hup(z) digital integrator with the
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Fig. 8. Magnitude responses of proposed and the existing −90°
phase integrators with the ideal integrator.

Fig. 9. Phase responses of proposed and the existing −90° phase
integrators with the ideal integrator.

Fig. 10. Relative Magnitude Errors of proposed and the existing
linear phase integrators.

ideal one for the complete Nyquist frequency range, respec-
tively. Further, Figures 8 and 9 show the magnitude and
phase responses of proposed integrators with constant phase
of −90° Hc2−c6(z), Ngo [3] and Tseng [5] digital integrator
with the ideal one for the complete Nyquist frequency range,
respectively.

Fig. 11. Relative Phase Errors of proposed and the existing linear
phase integrators.

Fig. 12. Relative Magnitude Errors of proposed and the existing
−90° phase integrators.

Fig. 13. Relative Phase Errors of proposed and the existing −90°
phase integrators.

For proposed and existing linear phase integrators, δ
and MMRE, over full Nyquist band, are given in Tab. 4
and that for proposed and existing integrators with constant
phase of −90°, for 0 ≤ ω ≤ 0.71π and 0 ≤ ω ≤ 0.76π are
given in Tab. 5.
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Integrators Max δ(ωc = 0.71π) Max δ(ωc = 0.76π) Max MRE
Hc2(z) 5.9806 12.1286 0.1460
Hc3(z) 6.0427 10.0212 0.0367
Hc4(z) 6.8929 8.3278 0.0279
Hc5(z) 4.6879 10.5810 0.1082
Hc6(z) 4.9046 9.6289 0.2514
HNgo(z) 27.0425 34.8119 0.0643
HTseng(z) 12.5687 17.1973 0.6180
Tab. 5. Max Phase Deviation and Max MRE of Integrators with constant phase of -90 degree.

Figures 10 and 11 show plots of the variation of magni-
tude error function and phase error function with frequency
for the proposed linear phase integrators Hl3−l7(z), HJGJ(z),
H2MO+PZC(z), Hget(z), Hup(z) digital integrators

Figures 12 and 13 show plots of the variation of magni-
tude error function and phase error function with frequency
for integrators with constant phase of −90° designed using
our method Hc2−c6(z), Ngo and Tseng integrator.

From Figures 10 and 11, it is observed that all the
proposed linear phase integrator designs Hl3−l7(z) have an
MMRE not more than 0.06 and maximum phase deviation
less than 4° over wideband. All these designs clearly outper-
form any of the existing integrators in phase response over
complete Nyquist range. HJGJ(z), H2MO+PZC(z), Hget(z)
and Hup(z) have a maximum phase deviation of 38.4682°,
45.0071°, 37.6768° and 10.4348° for 0 ≤ ω ≤ π and
an MMRE of 0.2153, 0.2909, 0.2082 and 0.0149, respec-
tively.

Hl3(z) has an MMRE of 0.0273 over wideband, better
than the existing or proposed integrator designs. It exhibits
a maximum phase deviation of just 3.6089° over complete
Nyquist range. Hl4(z) exhibits an MMRE of 0.0433 and a
maximum phase deviation of 3.4775°. Hl5(z) and Hl6(z)
have an MMRE < 0.02 for 0 ≤ ω ≤ 0.8π and an MMRE
of 0.0341 and 0.0398 over wideband, respectively. They ex-
hibit a maximum phase deviation of 3.9078° and 3.7995°
over complete Nyquist band, respectively. With an MMRE
of 0.0580 over wideband, Hl7(z) has relatively low magni-
tude error for 0.7π ≤ ω ≤ 0.95π. It exhibits maximum phase
deviation of 3.8579° over wideband and outperforms all pro-
posed and existing integrator designs for 0.7π ≤ ω ≤ π in
phase response.

With reference to Figures 12 and 13, HNgo(z) and
HTseng(z) perfectly approximate ideal phase response of−90°
for ω upto 0.3π after which their phase deviation drastically
increases for the rest of the Nyquist band. HTseng(z) exhibits
excellent magnitude response upto ω = 0.3π but then fails
to maintain this for the rest of the Nyquist frequency range.
HNgo(z), however, has an MMRE of 0.0643 over wideband.
All proposed designs Hc2−c6(z) haveMMRE better than that
of HTseng(z) over wideband.

Hc4(z) outperforms existing and proposed integrators
in magnitude response with an MMRE of just 0.0279 over
wideband. It is followed by Hc3(z) which has a reason-

ably well magnitude response for full Nyquist band with an
MMRE of 0.0367. These designs, however, do not stand
best in phase response but manage to maintain δ < 10° for
0 ≤ ω ≤ 0.77π and 0 ≤ ω ≤ 0.76π respectively. These
designs could be termed as magnitude-dominant designs.

Hc5(z) and Hc2(z) out stand existing and other pro-
posed integrator designs in phase response for 0 ≤ ω ≤ 0.71π
with δ < 5° up to ω = 0.71π and δ approximately equal
to 5° upto ω = 0.70π, respectively. Hc5(z) outperforms
HNgo(z) for 0 ≤ ω ≤ 0.69π in magnitude response and ex-
hibits an MMRE of 0.1082 over wideband. Hc2(z) lacks in
magnitude response with an MMRE of 0.1460 for complete
Nyquist band. These designs could be called phase optimal
designs.

Amongst proposed integrator designs, Hc6(z) exhibits
worst magnitude response over wideband and has an MMRE
less than 0.1 up to ω = 0.8π and an MMRE of 0.2514 over
full Nyquist band. But it is interesting to note that it has
δ < 5° for 0 ≤ ω ≤ 0.7π and δ < 10° for 0 ≤ ω ≤ 0.76π.
This can be considered as best trade off between δ and ωc

among all other proposed designs which either have δ < 5°
upto ω = 0.7π and δ < 10° for ω < 0.76π or have δ < 10°
for ω = 0.76π and δ < 5° for ω < 0.7π. It exhibits a unique
bandwidth optimality which none of the other design does.

Extensive simulations have been carried out to verify
the system’s response of proposed integrators but the actual
characteristics of the system, in hardware implementation, is
governed by the bit-resolution of the processor. The systems
coefficients are required to be converted in binary for pro-
cessing. The coefficients which are multiple of 5 could be
represented in binary by finite number of bits while others
require infinite number of bits for their binary representa-
tion, hence undergoing digital word length effect, owing to
which, systems response might worsen. Now a days, 64-bit
processors are commonly used for real-time applications. In
such a scenario, impact of digital word length effect of coeffi-
cients on system’s response will be minimal. The poles of all
the proposed integrators have been constraint to be located at
z = 1, which ensures the response of the proposed integrators
match the ideal one near the origin (ω = 0).

7. Conclusion
Methodology for the design of second order linear phase

integrators and oneswith constant phase of−90° is presented.
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Proposed integrators Hl3−l7(z) show an excellent phase lin-
earity with δ < 4° over full Nyquist band while simulta-
neously maintaining low magnitude error. Constant phase
of −90° is achieved for proposed integrators Hc2−c6(z) for
0 ≤ ω ≤ 0.73π and they exhibit considerably low magni-
tude error over wideband. Trade-off among magnitude error,
phase deviation and passband cut-off frequency is analysed
and results show attractive real-time signal processing ap-
plications of proposed integrators as per the requirement of
accuracy and bandwidth.

The performances of the proposed integrators are com-
pared with few other state of the art integrators and proven
of considerable high accuracy. As a future scope of the re-
search, impact of digital word length of the coefficients on the
system’s response of proposed integrators could be studied
further.
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