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Abstract

A convenient and exact method of using a
sliding load to the calibration of the single
six-port reflectometer is described. Neither
reflection coefficient nor positions of the
sliding load settings need be known.
Reflection coefficient of the load is not
limited to small values. No numerical
Litemtions are involved in the calibration.
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1. Introduction

For accurate measurement of low reflection coeffi-
cients with six-port reflectometers, a matched termina-
tion should be used as one of the calibration standards.
The measurement accuracy in the vicinity of Smith chart
center is then limited mainly by the residual reflection
of the termination. To reduce this error, a sliding
matched load can be used. Existing methods employing
the sliding load have certain limitations; they are briefly
reviewed in the next section. Following this, a new
procedure is introduced which is both more practical
and free of limitations of the preceding methods.

The method is an extension to and is based on the
calibration procedure described in [1], which is a pre-
requisite to studying the present theory. Most of the
quantities used here are defined in [1]. The formulas of
the paper [1] will be referred to by their respective
numbers preceded by "1-", e.g. "Eq. (1-4)".

2. Existing approach

Thc sliding load technique is currently based on the
fact that when a load is slid, the power readings P,
(i =1,2,3,4) of the four detectors vary around the
values P, corresponding to the perfectly matched load.

The values P ; can be determined e.g. by moving the load
and observing for the minimum and maximum readings
of the four detectors (Method 1}. A more practical
procedure (Method 2) has been suggested by Somlo [2]
using only three sliding load settings, however with
known relative positions. Assuming the reference port
being i = 4, the normalized powers corresponding to
the perfectly matched load are then

Poi
poi=};— i=112!3 (1)

]

The methods based on the above techniques have
certain limitations. Method 1 is tedious. An inconve-
nience of Method 2 from operator’s point of view is that
the sliding load must be set to known positions. Method
2 is not theoretically exact: it is not suitable for loads
with higher residual reflections. Generally, it is not
possible to carry out the procedures of either of the
methods with normalized powers p, = P, /P,. While the
normalized powers also vary with the load position,
their mean values are not equal to the normalized pow-
ers p,, corresponding to a perfectly matched load. Asa
consequence, the accuracy of determining P,; may be
affected by the signal source amplitude instability.

The present paper describes a procedure that, based
on a different approach, is free of all of the above
limitations. The method is not restricted to low reflec-
tion sliding terminations. It requires only normalized
powers to be measured for each load setting. It is there-
fore insensitive to input power variations. The load
settings (min. three) can be arbitrary and unknown,
Hence, the sliding load is used with the same conve-
nience and ease as in conventional four-port network
analyzers,

The outline of the proposed method is as follows: As
the first step, the calibration according to [1] (using a
matched Ioad and four unity-reflection standards) is
performed, taking one position of the sliding load as the
perfectly matched load. This results in incorrect, "bi-
ased" calibration constants. With such biased calibra-
tion and the storcd normalized powers, the reflection
coefficients of all of the sliding load settings are com-
puted. The information is sufficient to correct the cali-
bration constants.
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2. Transformation of reflection coeffi-
cient by imperfect calibration

In s section, a general relation is derived defining
the transformation between the actual reflection coef-
ficient of a device under test (DUT) and the measured
value when an incorrect calibration matrix is used. An-
alyzing the propertics of the transformation for the case
- of calibration with an imperfect matched load standard,
formulas are derived which will, in the following sec-
tions, enable to correct the calibration matrix.

If the actual reflection cocfficients of the calibration
standards differ from their supposed values the calibra-
tion will result in an incorrect - "biased" calibration

matrix D° (superscript b will be henceforth added to all

such biased quantities). If D° is used in the measure-
ment of a DUT with the actual reflection coefficient
I’ = x + jy, the result will be an incorrect - measured
reflection coefficient I, = x,, + jy,, which is given by

the formula w R” = D° P analogous to (1-4), i.e.

1 P
xm b P”

w = D - 2
ym p] ( )
M 1

where p, are normalized powers corresponding to the

actual reflection coefficient I'. They are given by the
correct (so far unknown) matrix C from (1-1) or (1-2).
Substituting (1-2} in (2) leads to the equation

D"CR | 3)

defining the transformation between the actual (con-
tained in the column R) and measured (contained in

R™) reflection coefficients, Defining the transformation
matrix as

b

T=D"C @

w4 .
Eq. (3) becomes R = ” TR, ie.

1 tI] tlZ tl3 tl4 1
x_ d [ty by ts ] | x ®)
Y Wy by By Ty );
M Loy b by L] |7

Note that while /* = x* + yz, the corresponding rela-
tion for M need not be valid: in general, M # x’, + y-.
Similarly, w = d.

Next, let us consider a particular case of biasing the
calibration which arises when an imperfect load

[ =x, +jy,=rexp (fi"L) ©®)

is connected instead of the matched termination
I' = 0. (In the proposed method, I'y is the reflection
coefficient of one of the sliding load settings). Following
the lines of the calibration described in [1], the scaling
factors now will be

})i,= [pi]r=FL i:1’2)3 (7)

| and will differ from the so far unknown true scaling
factors

Y= p]

The substitution of (6) and (7) in the right hand and
left hand columns of {1-1), respectively, leads to the
relation

i=1273 (8)

Y?:Yiei i=1273 (9)

where

L+ 20x — o tan
e = > =123
L+ 20, =~ 2y, + 2,0,

areerror factors (e, = 1ifI', = 0). The biased scaling
factors Y; enter the further calibration process. In the
first place, they affect the quantities Q;; defined in Sec-
tion 3.2 of [1], modifying them to Q; = Oy ¢. The quan-
tities Q:J’- in turn enter Eq. (1-9) but their effect is
manifested by merely multiplying Eq. (1-9) by a con-
stant factor e, The solution to (1-11) will therefore not
be affected. Consequently, the quantities x,, y, charac-
terizing the reference port, hence 4th row of matrices
B and C, will be determined correctly.

Q:; also enter the quantities W, defined by (1-13),
modifying them to W: = Wje, and, consequently, the
solution of (1-12), (1-14) to

b %

X =
€
X

=3 (10)
z+1

== -1

e.

The proof can be made directly by substituting (10)
in (1-12). The matrix C* = Y° B’, with B defined by (1-1)
and (1-2), becomes

Yie, 2Yix, —2Y)y; Yi[z,+(1-e)]
v |Yae 2Yix, —2Y,y, Yjlz,+(1-e))] 0
T |Yie, 2Mx, =2y, Yig+(1-ey)]
1 2, -, 44
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Note that 4th row as well as 2nd and 3rd columns of
C’ remained correct. .

Now, the effect of imperfect matched load has been
established. It can be shown (Appendix 1) that the
transformation matrix T assumes the form

ty 0 0 1=t
iy 1 0 iy

T= ty 0 1 —g (12)
[ 0 0 1—t41

As seen, T has only four independent elements. The
next procedure will be as follows: In Section 3, the
properties of the transformation (5} through the matrix
(12) will be examined, yielding basis for both obtaining
t,; and correcting the calibration data. In Section 4, the
elements of matrix T are obtained from the sliding load
data. Finally, in Section 5, the error factors ¢, are evalu-
ated and the correction of the biased calibration matri-
ces is undertaken.

3.Properties of transformation

Substituting (12) in (5), the relation between the
actual and measured reflection coefficients is obtained

1 ty 0 0 1-tf]1
X d |t 1 0 -t X

[+1] - = 2 2t (13)
Yo wity 01 -t ¥
M ty 0 0 1-,]1|7

The transformation has the following properties:

1. The actual reflection coefficient

T=x+jy=r ¥ is measured as Fo=x,+jy,
where
x  ty(l- "'2)
X, = U + U a4
y (=5
==t
p=ta (15)
w
==t (1= =7 (16)
The quantity M is given by

2
R (1—-t}7

M=t 17

2. AcirdeT =re¥,p € <0;2r) is transformed
inthe circle T, =T, + R €. Its radius is

R= (18)

L
u

and its center ', = x_ + jy, + R_exp(jp ) where

x,= by (1U'_ ’2) (19)
i a-r
E U (20)
VY
|

Fig. 1
Transformation of reflection coefficient from true to mea-
sured value by a calibration biased by imperfect matched
load standard.

Apart from the change in radius, the circle trans-
formation is of a translation type (Fig.1), i.e. the
phase angle with respect to the circle center
remains unchanged:
p = arg(l) = arg(l', — ) (21)
3. The ideal matched load I" = 0 is measured as
I, =x, +jy, where

_ Iy
=t
b} (22)
L b
oy
and the quantity M is
iy
M, =2 (23)

tll

This is an important point because the knowl-
edge of x, y,, M, enables us to find the error
factors ¢, (see Section 5) and in turn correct the
calibration matrix, Hence, the elements of matrix
T must be obtained. It will be accomplished in
Section 4 using the sliding load data and the
propertics 1 and 2 of the transformation.
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4. Elements of transformation matrix

Let the actual reflection coefficients of the calibra-
tion sliding load at its various n = 3 seitings be

IN=rexplpy) k=12..n
(the one used in determining Y:’ has been denoted
I, in Section 2). We assume that neither I, nor ¢, are
known. The values measured, i.e. those computed from
(2) using the biased calibration matrix D’, are
I ,=x,+jv.,, k=12 ..n
Ifacircle is fitted [3] to the points I, (hence at least
three load settings are necessary), its radius and center
coordinates will have to satisfy (18) to (20) with r,
substituted for » and, from (16),
U=t ,(1-m) -1 (24)
Since the reflection coefficient I', will be measured
as a perfect match, the quantity M as calculated from
(2) will be zero (a derivation see in Appendix 2). Then
from (17)
2 2
tg(L—r)+r =0 (25)
Eqgs. (18) - (20), (24), (25) represent a set of five
equations for sixunknowns: ¢, t,,,,,,0,,, 7, U. One more
equation is obtained from the definition U = w/d in

(16). Appendix 2 shows that w = 1 for I' = I',.. Using
Eq. (1-3) for d then results in

Us=1+2c0 ~ Dy, +27,
Noting that 2, —2y, z, are 4th row clements of

cither matrices C and C’ and cxpanding x,, y, in terms
ofr, p,_yields

U=1+ Cy,r_cos(p) + Cpyr, sinfp) + Cyur.

Argument ¢, can be expressed in terms of the fitted
circle parameters using (21) with ', = 0:

o= arg([-T) = arg(-I) =p. -7
Hence

cos(p) = —cos(p) = —xR,

sin(p) = —sin(p.) = ~y /R,

and

r
U=1- (Cazxc + C43yc) -Iﬂil_’ + C“ri (26)

Egs. (18) - (20), (24) - (26) are a complete set of
equations to obtain all the unknown quantities. Elimi-
nating U from (18) and (26}, r,_is obtained as

1
n= @7
v, [h+ V-1 ]
where
h = _ 1+ Cox, + Cyy. (28)
2RYC,,

(the proof see in Appendix 3). Then from (18) - (20),
(24) - (25) we have straightforwardly

1 —rLR n X,
fn—rL'l—-z— t21=_-1TT
. —rL rL (29)
L= rL . yc t = riz,
1= g 1__rL2 4 —2'1 —7

At this point, our immediate goal has been achieved:
the elements of the transformation matrix T have been
obtainedinterms of the radius R and center coordinates
x,, y. of the circle fitted to the measured points corre-
sponding to various arbitrary unknown settings of a
sliding termination. The correction of the biased cali-
bration constants is now enabled.

5. Correction
Substituting (29) to (22), (23), one obtains

xc
X =
® 1-nR

(30)

M 1~r R
Since these values represent the transform of the
perfectly matched load by the biased calibration, Eq.
(2) can be used to calculate the normalized powers
corresponding to T’ = 0, According to (8), these nor-
malized powers are equal to the correct scaling factors
Y,. Hence, (2) can be written as

1 Y,
xo b sz
w = D
A Y,
M 1

[+]
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Left-multiplying it by (") ' = C" =Y - B’ yields
the following equation for ¥;:

Y, e 1

YZ Y; b Xo
= B

v, =" Y, Yo

1 1 M,

All matrices on the right-hand side are known; w is
determined from 4th row. The error factors ¢, defined

by (9), are then

In $t¢
1.2306-2

-1.2306-2
-1.230E-3

0 1.250E~2
Pa 311

Fig. 2 ‘
Measurement of a sliding load at severat settings:
1 - calibration with a fixed termination,
2 - calibration with the sliding termination

Y? B:1+BEZIO+B:3ya+B:4Mo
e ==
S £ B:’, +B:’2x° + B:;yo +B:;Mo (31)
i=1,2,3

The elemeats of C” can be corrected by removing ¢,
from (11); the result is given m Appendix 1, viz Eq. (A2).
Now the matrix C can be inverted to obtain the final
correct calibration matrix D. At this point, the calibra-
tion is completed.

Extensive experimental experience with an X-band
waveguide six-port reflectometer [4] confirmed the use-
fulness of the method. Its effect is illuistrated in Fig, 2.
Circle 1 represents the measurement at f = 10 GHz of
a good guality R-100 waveguide sliding load taking one
of its settings for the perfectly matched load. The circle
is shifted from the origin by the systematic error which
is approximately 6.1 - 10’ in magnitude. This gives the
system the effective directivity of 44 dB.

Circle 2 represents the measurement of the same
load (at approximately the same settings) after the cal-
ibration described in this paper has been applied. The
circle center is now offset by merely 6.5 - 10~ which
corresponds to the effective directivity of 63 dB. The

procedure thus substantially improved the measure-
ment accuracy.

6. Conclusions

A ew procedure for calibrating the six-port reflec-
tometer has been developed which uses a sliding termi-
nation as conveniently as in the conventional four-port
network analyzers. The calibration procedure can be
summed up as follows:

1, Measure and store normalized powers for 3 or
more arbitrary positions of a sliding load (well
spaced within half- wavelength) and four unity-
reflection standards.

2. Perform the calibration [1] using the normalized
powers for one (say the first) position of the
sliding load as if it were a perfectly matched foad.

3. Using the obtained (biased) calibration matrix,
compute reflection coefficients of all the sliding
load settings.

4. Fit a circle to these points; find its center coordi-
nates x,, y, and radius R.

5. Compute modulus r, of the sliding load reflection
coefficient from (27) and (28).

6. Compute x, v, M, from (30). Compute ¢, from
(3D, '

7. Compute the correct matrix C using (A2). Invert
Cto obtain the correct calibration matrix D. The
calibration is completed.

Appendix 1: A form of transformation
matrix

The transformation matrix is defined by (4) as

T =D" - C where D’ is the biased calibration matrix
and Cis the true, so far unknown matrix defined in (1-2):

Y, Wx -2y, Yz

Y, 2Y,x, -2Y. Y,z
C=yB= |2 02 T Rl ()

Y, Wx, -2,y Yz

1 2.\54 - 2.)’4 24

Comparing (11) with (A1), the elements C;; of matrix
C can be expressed in terms of the elements CE of the
biased matrix C':

S?l Cll’z Cll’a CJ;& + C:l - gil"
€ €
S g @ ara-S
C= 2 2
Ca G
_‘: k) 13 CJ::4 + CJ::1 - e;
C:I C:: 43 CL + Cﬁ1 - C:1
(A2)
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Eg. (4) then becomes the product

[ b b b
D, D, D, D,
b b b
T= D, Dy Dy Dy %
- b b b b
Dy Dy Dy Dy
b b b b
Dy Dy Dy Dy
I-C‘;l e i Cl:l-
e, 12 1 S e
C:l CZ[
. G G GHG- S
x
Cy Cy
Z » C:; C:4 + C'i; - 'Z
C:1 dz 4 C:-i + Cil - C:1

As seen, 2nd and 3rd columns of matrix C are equal
to those of matrix C", which is inverse to D”; 2nd and 3rd
columns of matrix T must therefore be part of the unit
matrix, cf. (12).

The first column of matrix C differs from that of
matrix C" the elements of 1st column of matrix T are
therefore general quantities denoted ¢, t,), &), 4.

The fourth column C.; of matrix C can be looked
upon as a sum of 3 terms: C., = C]?4+ Cl-)l —C.;. The
first and sccond terms are columns of the biased matrix

C’ and hence will contribute by the respective columns
of the unit matrix. The third term is equal to 1st column
of matrix C and will contribute the same way as to Ist
column. The fourth column of matrix T therefore is

b b b . b b b
T.,,=D"C.,=D"C,+D C~D'C,

and, after evaluating,

L 0 1 by 1-1,
T_4 = Ly = 0 + 0 _ £y ” ~In

Iy 0 0 ty i %)

Lu 1 0 ty 1~y

Consequently, matrix T has the form of (12).

Appendix 2: Measurement of the cali-
bration load

Thc purpose of this appendix is to calculate, using
Eq. (2), the quantities w and M for the casc when the
load with reflection coefficient I, is connected as DUT.
Since I, is the reflection coefficient of the sliding load
setting which was used in place of a matched load, the
normalized powers p, are according to (7) equal to the
biased scaling factors Y:’ =Y, e, Confronting this fact
with {11), it is seen that the column P of powers is equal

to ist column Ct.’l of matrix C* = (Db)_i. The product

of D° with P yields therefore 1st column of the unit
matrix so that

1 C‘I’I 1
w Tw| _ p* o _ 0
Ya Cx| |0
0
M Ca
Consequentlyx,, = 0,y,, = 0 (which was expected),
w=1 (A3)
M=0 (A4)

Appendix 3: Solving for r;

Eliminating Ufrom (18) and (26) withr = r, in (18},
the equation is obtained

1
5+ 3= 2h (AS5)
where
s=rnv(C,
1 (A6)

h= m‘ (1 +Cpux, + C43_Vc)

Eq. (A5) is a quadratic equation which has two
mutually reciprocal solutions 5,, 5, = 1/5,. In practical
situation R<<1 (low reflection sliding load) and
|Cyl<<1 (a good directivity reference port), hence h
is a large positive quantity, #>>1. The solutions are
therefore positive, one being small

1

— (A7)
h+vp -1

=

the other, 5, = 1/s;, large. If R decreases to zero, A
increases, and 5, (hence r;) decreases, which corre-
sponds to the physical situation. On the other hand, the
second root s, increases, which is contrary to the phys-
ical reality. Consequently, only s, is a physically accept-
able solution, Substituting (A6) to (A7), the final
expression (27) is obtained.
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CORRECTIONS - RADIOENGINEERING NO. 1/92

Calibrating the Six-Port Reflectome-
ter ..., Part 1: Perfectly Matched Load
V. Bilik

A printing error occured in Eq.(14) of the paper [1].
The formula should correctly read as follows:

1

¢ 5. 1 2, 2x, 2x;

Y Bl it T PR A
¢ 5 1 z z z
C4 S4 1 1 2 3

(14)

w,-1 W21‘"1 Wsl“'l
- W,—1 Wu“l 32"1

Wie—=1 Wy—1 W;—1

w,—~1 W,—1 W,—1
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A New Version of the Microstrip to
Waveguide Transition
J. Machdac

Therc was one mistake in the paper. The Figures 3
and 5 have been interchanged.

6TH INTERNATIONAL SCIENTIFIC CONFERENCE
OF ELECTROTECHNICAL FACULTY OF TECHNI-
CAL UNIVERSITY OF KOSICE

T'he 6th International Scientific Conference of
Electrotechnical Faculty of TU of Kofice was held at
The TU Kogice, in September 14-16, 1992,

Since 1982, this conference has taken place cvery two
year, with guests from many countries over the world of
a scientific exchange of experiences and also of contact-
ing representatives of industry and scientific institutios.
The program of the conference was intent in the follow-
ing sections:

— Electronic computers and informatics

— Electroenergetics

— Cybernetics and artificial intelligence

— Physics

— Mathematics

— Radicelectronics

— High voltage technology

— Theoretical electrotechnology and electronic
measurements

— Social sciences - Technology, civilisation, cul-
ture.

Over 250 papers of participants from 23 countries
was presented during the conference.

The Radioelectronics section covers wide range of
the field including following topics: Circuit theory,
Electromagnetic field theory, Digital technology, Signal
processing, Optoelectronics, Radioelectronics systems
and Acustoelectronics.

The papers has high professional level. The confer-
ence was held in the pleasant and creative atmosphere.

Jdan Turdn TU Kofice



