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Abstract

In the contribution the basic principles of
the Functional Stability Theory are
described, some problems discussed in more
details, the Criterion of the Theory is shown,
possibilities in Synergetics are mentioned
and an example of the Theory application is
introduced to show the effectiveness of the

\approach. Yy
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1. Importance of Stability
Theories in Synergetics

Stability or instability determination of individual
stationary solutions of evolutionary equation of a
synergetic system is just of a basic importance, refering to
a possible real existence of individeal systemic orders.
These ones are characterized by different stationary order-
parameter values and their stability depends on the
constellation of investigated systemic parameters. There is
a chance for the most stability theories and methods
(Lyapunov's theory, the linearization method, the potential
modeliing method e.t.c.) to be used,

Investigation of transition conditions between the two
stable system-orders at least has the same importance,
certainly (more the stable stationary solutions of the
evolutionary equation) or the determination of areas in the
space of systemic parameters having conditioned just the
respective synergetical system-order. There are many
problems of this kind. Let us mention a bistable flip-flop,
spontaneous and stimulated emission of a laser - assessing
of the threshold voltage, space distribution of laser
resonator field changes (changes of a meode structure)
e.t.c.. This problem is unknown to us to be universally
solved. Lyapunov's direct (second) method, bifurcation
theory, Landau's phase transition theory and further
theories may be applied, time by time. There are good

reasons to belive that Donocik’s functional stability theory
might be used for the same purpose, too, or saying more
exactly, the problem could be formulated as a functional
stability task.

2. Principles of Functional
Stability Theory

The theory assumes a model of time system behaviour
i an analytical shape under consideration. The Volterra
integral equation of the second order, e.g., can be used
(with the nonlineary part, of course} to what all the
differential equations with separable linear as well as
nonlinear parts may be transformed.

The functional approach consists in a primary
transformation of the total time system behaviour into the

space of real numbers (of "the functional™) and the

subsequent investigation of this functional convergent
possibilities representing the response to jump-extinction
of an elementary perturbation of the system parameters.
Then the statement on the functional stability is always
applied to the sophisticated functional transformation and
depends on the system parameters. The functional
transformation is to be chosen in a way having a possibility
for the result of the transformation (the functional) to be a
rate of the relevant quality of an investigation system
behaviour and to express the qualitative changes. The
manner of the qualitative changes determination may be
briefly described like this [1, 2].

The investigated system evolution is given by the
Volterra integral equation

o) = fe.p)+ [ Ftt.p, o)y - a, )
1}
or briefly
W) =0 {60} @

Now this evolution will be transformed to the space of
the functional (to the space of real numbers) with respect to
the parameter p, for example by a functional
transformation

v=S{6(0}. €)

The S-transformation is to be chosen according to the
character of the investigated problem [1]. We have used for
solved problems the following “convenient” functionals:
the Laplace transform, the mean value, the stationary
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solution, one term of Fourier series e.t.c. If the functional
is not selected "suitably", the changes of the system
behaviour need not be taken. The sityation may be
interpreted by the help of an instrument used for
measuring of an incorrect (or not asked) value. It is
generally valid that "practise makes perfect”.

The functional generally depends on the parameter p,
see (2), (3), thus we have

v=0@) )

For the functional stability p must be calculated from
(4) (or n is expressed as a function of f from the very
beginning), so that

p=qv) (5)

Now we intreduce the perturbated motion $ap(f) and in
the relation (1) we write instead of p value p+Ap and
instead of ¢(¢) perturbated value ¢4, and the equation (4)
has the shape

v+ AV =Q(p+Ap). ©)

The testing motion now is formed by the fact that Ap
acts only within the time interval (0,#,), ty may be
arbitrarily small. Then the expression ¢,(f) (testing
motion) may be created from ¢ay(f) (instead of Ap we
write Ap - u(to — 1), where u(to — ) is equal 1 for 7 < fy and
Ofort=0).

If we choose arbitrarily small £ >0 and such a number
3 > 0 exists, so that

|5{03,(0} - S0} | <e | ™

whenever [Ap] <8, then we declare the motion ¢(7) stable
with respect to the parameter p and the functional S{¢(1)}
and unstable if this statement is not valid. Othervise it may
be said that the definition of the functionally stable motion
according to (7) is equal to the statement that there is no
Jump at the curve v= Q(p) if the testing motion is applied.

3. Functional Stability Criterion

The functionally stable system behaviour (as mentioned
above) depends on the functional and system parameters
for which the "transitional effects” have not occured in a
value of the functional ( it is not a question of
discontinuity, only - for example type S of a characteristic,
e.t.c.- see [1]).

The functionally unstable behaviour (jump effects have
occured) may be defined other way round. Then we have
many possibilities in an interpretation of a lot of problems
concerning abrupt qualitative changes in a systemic
behaviour as the functional stability task. Critical values of
system parameters, after elementary overcoming of which
the abrupt change of the system qualitative behaviour has

been reached (the change of a synergetic system order),
facilitate the application of the theory which depends on
such a functional transformation choice that has fulfilled
not only general conditions of the theory itself ({ an
unambiguous correspondency of the behaviour and a
joined functional to each other, e.g.) but warrant moreover,
that the transitional effect of the selected functional
appears just in time the examined quality of the mentioned
system behaviour has been changed (or has been changed
its order).

There is then a substantial fact, that the analytical
expression of the functional stability criterion is at disposal
having the character of the necessary and sufficient
condition. Thus we have the possibility the critical
parameter values of the system have been determined quite
correctly, on principle (in an analytical shape at least) - [1,
2].

In [1] the derivation of the criterion has been exposed.
It was found (for the one dimensional functional) that

o= LSOOI ST . ®

The signum of equality in (8) means the critical value
of the continuous parameter p after a small change of
which the stable or unstable mation is established. If we
have calculated ¢ < 1, then the motion is stable and for
¢>1 the result gives the unstable state. The critical value
p=p. at which transition or changes is a very important
quantity of motion in the synergetic sense of word as well
(the critical value of the order parameter).

In comparison with Lyapunov's or Thom's theory the
mentioned fact that the criterion is at disposal has a very
serious meaning for the systems described in an analytical
shape.

In [4] the formula (8) has been mentioned in sharper
form

lim LS10,0, =1, ©

where p is critical parameter value.

4. Applicability of Functional
Stability

From the outline mentioned follows that the general
applicability of the functional stability is much more
greater, than to be used only in systems, in behaviour of
which synergismus may be expected but also when the
relevant evolution equation of an order-parameter can be
written. The method is applicable on principle to all the
nonlinear dynamical systems. It is necessary to state that
Haken's synergetic method based upon the evolution
equation setting up complies with the applied principle
mentioned above - see [5].
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Problem of the evolution equation determination itself
is involved, at first, in the fact that this one may serve very
well in a shape of an analytical model of the investigated
system depending on time, which is very strongly asked
for the functional stability application.

A proper order-parameter choice in the synergetical
interpretation, secondly, helps already very much to the
application of the mentioned qualitative point of viev that
is just being represented by a proper choice of the
functional transformation, if the theory is to be applied.

Such an order-parameter choice as wel as a successful
relevant evolution equation enables, evidently, to convert
the problem of more stable qualitative different system-
order transition into the problem of transition conditions of
individual stationary solutions of the equation. Then the
problem of the formulation as the functional stability task
may be facilitated.

The process of the theory application is then a
following one: If there are two different stable stationary
solutions of the evolution equation (constant in time), at
least an abrupt change of the stationary solution of the
equation (under the changed condition of the system-order
with the continuous change of the systemic parameters)
may consequently play a role of the jump-effect of the
functional "behaviour image" of this synergetic system. As
a suitable functional of the mentioned transitions the
stationary solution value may be applied directly. Other
functional transformations have been recommended
former. The following problems have been solved, e.g.,
with the help of the Donocik's theory:

* Synchronism of the phase-controlled oscillators, [1],
clasical solution, see for example [6],

¢ (Critical parameter values of Hamiltonian and
Heisenberg equation, {2],

* Flip-flop separatrices in the phase space, [3],

+ Synchronism of oscillating-modes in a lager
resonator, [4]

*+ Threshold of stimulated laser
determination, [4], e.t.c.

emission

5. Example of Application of
Functional Stability

5.1 Threshold of stimulated laser emission
determination

The considered qualitative change appears when the
stimulated laser emission has come for example in case
that the jump-effect of the electrical field amplitude of
output radiation might be observed at the investigated
model of laser system. Qur task lies in the fact that the

critical wvalue of exciting parameter o (50 called
nonsaturated gain), at what the qualitative change of laser
stationary state occurs, is described by the equation

E+af+PES=h (10)

where B represents the saturation constant,
A noise fluctuation and
E  is the intensity of electrical field.

This relation may be transposed at the integral equation
with respect to the functional stability approach. We obtain

!
E=Ey+ [ (h-o£-BE%-dr. ()
[¢]

Neglecting /# the stationary solution of (10} is

Esi=0, Egz=2 /% (12)

Substituting (12) in (11) and for initial condition
Eo=Eg (13)

we obtain (11) in the form
!
E3=E3+J(—aES—f5E§)-d'c, (14)
0

Therefore the integral is equal zero. The meaning of the
fact may be interpreted like this: The "heart” of the
functional involves the information of investigated
stationary state behaviour,

Mean value will be chosen as the functional so that the
functional transformation is defined
1
v=S{Est=1- [ Es-dr=Es (15
. S S
The value of stationary solution is directly the
functional of the investigated motion.

The functional stability criterion will be used in the
form for the functionally stable solution

Ig H
d j1 3
_-BES{!S .{[[Es+‘[];(—aE--ﬁES) : dr}-dt} <1. (16)
After an elementary calculation we have

o+ 3BEE>0 (an

and individual stationary states Es; and Ess give the
conditions in the shape

>0 anda<( (18)

The stationary state Eg is functionally stable with
respect to the chosen functional and the initial condition,
namely, for the exciting parameter o greater than zero.
The states Eg; are functionally unstable (o <0). The
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qualitative change of stationary states is just observed at
the critical value of the parameter o, = 0. The result may
be reached by classical methods as well. The effectiveness
of the functional stability is supported by the above
example.

6. Conclusion

Critical states of synergetic systems may be determined
by the help of the functional stability theory, depending
upon the transitions among more stable orders, A precise
analytical expression is possible to find in principle for
critical arrangement in the space of parameters.
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