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( Abstract )

The lattice structures for linear prediction
were formulated in speech processing by
Makhoul [1]. The LPC coders are often used
in the transmission of speech signals. Such
systems include a filter in the receiver that
produces an approximation of a speech
waveform. The parameters of this filter are
extracted from the speech signal in the
vocoder for frames of N samples. The lattice
all-pole structure with two multipliers
Jfrequently occurs in such vocoders. The
signal flow graphs (SFG) are very useful for
a computation of the transfer function from
the source nodes to the sink nodes. /
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1. Introduction

Linear pfediction methods model the signal spectrum
by an all-pole structure with a digital filter transfer
function given by
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It is assumed, without any loss of generality, that the
leading coeflicient by of Bpfdz) is one.

H(o) =

Makhoul showed the existence of a class of such lattice
structures all of which have the following properties in
common: (1) the resulting all-pole linear prediction filter is
guaranteed to be stable (if for example the absolute values
of every reflection coefficient are less than one);, (2)

stability and frequency responses are less sensitive to finite
wordlength computations than canonic forms.

2. State-space description of the
lattice all-pole structure

The lattice structure involves a cascade of particular
sections. The ith section, referred to as a digital two-pair,
is completely characterized by a parameter k;, for
i=1,2,..., M. These parameters are known as reflection
coefficient. The SFG of the ith section is shown in
Figure 1.
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Fig. 1
The £h lattice section with two multipliers.

The difference state equations of the ith section have
the form

yimy=xin)y—kivin) ,

vin+ 1) = (1~ k2, Wit () +kiayin) | 2
vily = (1 = k7 Wit (7 — 1) + kv i(n — 1)+ v (015 ()
Vi (n+ 1) = (1~ k2 wilm) + kei(n)

Consider the number of sections required to realize the
transform function (1) is M. The SFG of the Afth order
lattice all-pole structure we can see in Figure 2.

The state difference equations can be written as
vir+ 1) = —kyvi(m) —kava(m) ... = kavas(n) + x(m),
va(n+ 1) = (1~ k3w (n) — kykavaln) — kykava(m) —

o Rikeavam () = kikawadn) + kx(n) |
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v3(n)=(1 —k%)vz(n) —kaksva(n) —kakava(n) — ... processor. Therefore, the state difference equations (3) can
, be solved with the help of the unilateral z-transform and
.= hakypavap (1) - kakapnas(n) + kox(n) can be written into a more suitable form including the
initial conditions v{(0), va(2), ...,v4A0)
- vi(n) =—kyvi{n—1)—kava(n—1)—...
vart = (1 —kypa a2 () — ka2 kasvarm (0)... ! '
o= Eaagln = 1)+ 2(n — D+ v (0)8(n) ,
—kap2kavarn) + kaax(n) (3a)

Var0r+ 1) = (1= Kar War () = ka1 kagvarn)...
+hprXaem (1) .
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Fig. 2

Mth order lattice ali-pole structure of digital fiters.

These state difference equations (3} can be arranged
into the matrix form - the discrete state dynamic
equations

vin+ D=Av(m)+B x(n),
Y =Cv(m)+Dx(n) . 4)

For example, the matrix of reflection coefficients A has
the form

[ =k —k2 —k3 . ka2 =K1 k]
(-k) —kk: —hk ... —kkes —Khke Rk
0 (1=k3y —kaks ... —kakaes  —Kakaes ~Kakas
As . . .
0 0 0 L (N =k —kapakaer ~kaeaka
0 0 o .. 0 (1=kiey) ~kaprknr |

It is clear that matrix equations (4} are convenient in
the case of a computer solution. If somebody wants to
process the input data in line procedure, then he must use a
special hardware, which for example is a digital signal

va(ry = (1 —kDv (1= 1) —kikava(n— 1)~
kiksva(n—1)— ...~ kykawp(n — D+
kix(n— 1)+ va(0)S(n) |
vi3(n) = (1 - k2wa(n— 1) = kakesva(n — 1)~
kakeava(n—1)— ... — kakavpsln — D+
Feax(rr = 1)+ v3(0)3()

(5)
var(y = (1= kypg War1 01— 1) = kpgr kagvae(n — 1+
Eagax(n— 1) +vpd0)3(n) .

Figure 2 shows the SFG according to equations (3) or
(5). The SFG is useful for computing the transfer function
from some source nodes to a sink node. To do this, it is
convenient to use Mason' gain formula. If ¥(z), resp. X(z)
are the z-transform of y(n), resp x(n), then the solution of
the difference equations (3) can be written as

¥z2) = Ha) X)) + Z Hyzywi(0) . (6

BM( ) =

The first term of the equation (6) is usually called the
zero state response (Z3R), ([2]). The total response ¥(z) can
be considered as the sum of the ZSR and the zero input
response (ZIR) (the remaining term of (6) with an
addition). There is an example of the transfer functions
computation in the last part of this paper, which combines
the above results,

3. Example

1t is required to compute the coefficients of all transfer
functions of (6), when the reflection coefficients of the
fourth-order lattice structure are given

k1 =0,4382051448 , ko =-0,8889359911
k3 =0,9702683906 , k; =-0,9788207224

Figure 3 gives the lattice all-pole structure of the fourth
order.

The z-transform of output signal has the form

¥(2) = ) X(2) +

5 2 EH:(u)v,w)
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o w | 4 Conclusion
-k, ~ky To better understand the influence of the initial
conditions in the LPC synthesis of speech signal, we can
ky iy use the SFG description and the solution of difference
v T e ‘ % ") p m equation§ by means of z—transform_. Tfie Mason's gain
formula is very useful for the determination of all transfer

%© %10) 1;(0) :q—(a) functions.
Fig. 3

Fourth-order lattice all pole structure,

The coefficients of all transfer functions can be S. References
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ag=1,

ba=ky+kiks +kaks +kaks =-3,180635683 |

by =ky+kiky +kikaoks + kaka + ki kaks+

kykakiks = 3,861190467 ,

ba=ky+kika+kikaka +kaksks =-2,112154181 |
by =ks=0,4382651448 .

The other transfer fuctions of the initial conditions have
these coefficients

Hi) ==(caz* +eaz + 09zt +012)

cq =k =-0,9788207224 ,

Cc3 = ko +kikaks+kikakg +kiksks =1,779617403 |
co=ks +kokiks =-1,266942524 |
¢1=kq4=0,4382651448 .

Hi(z) = ~(dez? + d3z* + daz?) |
dq=k:=-0,9702683906 ,

di=kz + kakska =—1,266942524 |
dr=ks=0,4382651448 .

Hi(z)=—(esz? +e3z) ,

es = k3 =-0,8889359911 ,
e3=ks =0,4382651448 .
Haz) = —(faz*) ,
Ja=1ka=0,4382651448 .




