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Abstract

An efficient method of time domain
analysis of linear systems is proposed. This
method is based on the state space approach
and on the numerical Laplace inversion. The
problems of the sampled-data input signal
and steady-state response computation are
discussed.
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1. Introduction

During the developing of system NAF for the computer
design and optimization of continucus-time filters [1], the
following task had to be solved:

The N samples of continuous-time signal are scanned
so that the Nyquist's rate is exceeded minimally 100 times.
However, the equidistant sampling need not be necessarily
used. The s-domain transfer function coefficients of linear
filter are known. They are obtained by means of CAD
system NAF. The simulation of initially-at-rest filter
response to given input signal is required. Under the term
"initially-at-rest”, the filter response to the input signal by
zero system initial energy is considered {2].

The necessity to solve this problem led to the
developing of the Turbo Pascal unit for time domain
analysis. That unit is designed for the precise time-domain
analysis of designed filters from their transfer functions.
The unit performs following functions:

1) To compute the impulse and step response including
Dirac impulses identification.

2) To compute the initially-at-rest filter response on the
rectangular and trapezoidal signals.

3) To compute the initially-at-rest filter response on the
"customer's” signal whose sampies are stored in a data
file.

4) To compute the periodic steady state on the assumption
that the given signal represents just one period of its
periodic continuation.

As mentioned below, the used method of Laplace
inversion is also effective when the set of circuit equations
describing the filter is known instead of its transfer
function.

To realize items 1 to 4, the algoerithm of numerical
Laplace inversion has appeared to be most efficient [3].
This algorithm operates with the state model of filter,
which corresponds with its transfer function. The state
approach facilitates steady state response computation. The
algorithm leads to highly accurate analysis.

2. The state approach

The foundations of Laplace inversion are described
in [3],[4], [51,(6). Let us consider the transfer function K(s)
of n-th order linear system with single input w(f} and
single output y11):
T
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where L{ } is the operator of Laplace transform. As
shown in [6], the state space description corresponds with
this transfer function. Applying the Laplace transform, the
state equations can be rewritten as follows [6]:

(sE — A)X(s) = BW(s) + x(0) , o)

where X({s) and ¥(s) are the Laplace transforms of the
(nxl) state vector x(f) and the input signal w(f),
respectively. x(0) is the state vector of initial conditions in
time =0 and E is the (nmxn) identity matrix. The state
matrix A and the vector B have following structure:
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The output equation in time domain can be expressed
as follows:

M0 =T, (@1 anb Jena (O + an() 3)

where x;, i=1,2,.,,77 are the elements of state vector.

In this manner, the problem of time-domain analysis is
transformed to the problem of the Laplace inversion of
matrix equation (2). After Laplace inversion, the
time-domain state vector x(f) is obtained. The output signal
is then calculated from equation (3).

3. Initially-at-rest response
computation

The so-called "resetting principle" [4] is implied in
Fig.1.
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Fig.1
The resetting principle.

Let us divide time axis to partial intervals. The
"single-step" Laplace inversion will be performed in each
i-th time interval to obtain state vector x(f) from equation
(2). This equation is rewritten for the i-th interval as
follows:

(s/E—A)X! =BW(s)) + x(ty1) . 4

Tab.1  Various types of interpolation.

On the right hand side of this equation, the x(t.,) is the
state vector, computed in the last step. ¥ is the Laplace
transform of input signal, considering the origin of time
coordinate at the beginning of solved time interval and
w()=0 for t<t,. The corresponding shift of time origin of
time axis r'=t-t,,is in Fig. 1.

In accordance with [4], the equation (4) must be solved
for the set of precaiculated complex constants 5. In the
simplest case, the single constant

Sp= (1 +_])/T;
is assumed for i-th interval.

An efficient method for the calculation of vector X' is
described in [6]. This method is based on the LU
decomposition of matrix s, E « A. In case of constant step 7,
= T, the LU decomposition is performed only once. The
solution of (4) is then very economical for various right
hand sides. As soon as the vector X' is found, the

time-domain  solution is given by inverse Laplace
transform
x(t) = -2Im{X'}/T; . (5

The output signal 3(t, } at #= { is calculated from the
output equation (3).

By aforementioned procedure, the output signal values
in the time instants £,t, f, ... can be computed. The time
steps 7, must be chosen sufficiently short with the aim to
make "single-step" Laplace inversion (5) errors negligible.

4. Initial value and Dirac impulse
identification

It is often necessary to compute precise initial value of
response 3(0,) This value can be found by the initial value
theorem. For Laplace transform of rational fractions, this
approach can be implemented without problems. After
some algebraic manipulation, the incidental Dirac impulse
can be separated and its strength found.

, , time domain: Laplacedomain: W'(s)
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Remark: sampled signal w(t,}, i=0,1,2,...
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However, the limiting approach is not suitable for
computer implementation in case of Laplace inversion of
matrix equation. To compute initial value, the two-step
procedure may be used [5]. In the first step, we choose the
integration step 7, forward to compute vector x(7, ). Next
we take the same integration step back to obtain correct

initial vector x(0,).

The strength of incidental Dirac impulse for =0 is
computed also by two-step method. For more details, see

[51.

5. Sampled-data input signal

The input signal w(f) is often available in samples,
obtained by measurement or by other way. It is necessary
to perform interpolation to construct continuous-time
signal as the input signal of continuous-time system. Four
basic types of interpolation are set out in the Tab.1. Tt
should be noted that the "impulse interpolation” is not
interpolation in the sense as it is generally understood,
because the identity w (1) = w(z,), i=0,1,.. is not fulfilled.

The choice of interpolation will depend both on the
required accuracy of time analysis and on the actual
character of input signal the samples of which are at
disposal. It is also necessary to take the transmission
properties of the simulated circuit into account. The
impulse and step interpolations give good results if the
Nyquist's condition is fulfilled with a satisfactory reserve,
The system must not have a "high-pass character" because
the fast changes of input signal must not be amplified. The
computation of the Laplace transform W (s) is then very
simple,

The impulse (step) interpolation can be chosen if the
original input signal has the character of narrow
return-to-zaro impulses (sample-hold impulses).

The linear interpolation provides very good results in
case of various types of circuits.

The cubic spline interpolation is appointed for the
precision calculation on the assumption that the original
input signal is smooth but its sampling was performed with
relative low rate near the Nyquist's rate. The inverse
Laplace transform  with  this interpolation is
time-consuming, (see Tab.1).

In the Turbo-Pascal unit, the step interpolation is
preselected as the compromise between the analysis rate
and accuracy. The user can choose other types of
interpolation if he wishes.

6. Periodic steady-state response

A simple method of periodic steady-state computation
is described in [7]. Some improvements were made in [8].

This method is based on the state approach. To
approximate the derivatives by difference formulas, the
matrix differential state equation is replaced by the set of
algebraic equations,

To utilize the algorithm of Laplace inversion, another
efficient method of steady-state response computation can
be developed.

[n case of periodic steady-state response with the period
of repetition 7T,, the vectors x(0} and x(7.) are equal.

x(0)y=x(Tp) . (6)

After finding these wvectors, computation of the

steady-state response is easy.

It is well known that the solution of equation (2) in the
time domain consists of the iniially-at-rest part x,, (/) and
of the zero-input-response x,, (f}. For the time =7,

X(Tp) = Xiar{Tp) + Xzir(Tp) . (7

The zero-input-response vector is proportional to the
vector of initial conditions x(0):

X:i(Tp) =8 (Tp)x(0} . (8)

For the state system (2), the matrix g*(7.) is given by
matrix expression

g (Tpy=erlr . 9
Arranging equations (7), (8) and (9) yields

X(0) = (E—g*(T'n)] " Xiar T) . (10)

The wvector x,(7, ) can be calculated by Laplace
inversion of equation (2) during the period 7, under zero
initial conditions. The mattix g*(7" ) can be also obtained
by Laplace inversion of (2) for H{s}¥=0. To calculate the
k-th column of g*(T,), we take x, (0} = I, ()= 0,7 = k.

The matrix g*(7, ) can be calculated even more
efficiently by expanding the exponential function in (9)
into Taylor series and taking limited number of A terms:

N (AT
W ATy P
E-e?r = El, 7 .

()

The number of elements N must be chosen with respect
to the acceptable error . For £ the following expression
can be derived:

[ATRY
| N

i (ATp)*

/
eri

The symbol || || designates the matrix norm.

As soon as the calculation of vector x(0) is finished, the
steady-state response is obtained by the Laplace inversion
of (2).
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7. Time-domain analysis based on
two-graph modified nodal
approach

To perform the time-domain analysis according to the
above described method, we must know the s-domain
transfer function of the system. However, the matrix
equation based on the two-graph modified nodal approach
(2-graph ANA)[4] can be used instead of the transfer
function. As will be shown, the virtually same method can
be used even in this case. '

The 2-graph MNA leads to the matrix equation
(12)

where V is the vector of nodal voltages and incidental
branch currents, w is the input signal, and v(0) is the
vector of initial conditions. G + sC is the modified
admittance matrix. B is an incidence cofumn vector. The
computer formulation of this equation is well known.

(G +5C)V(s) = Duis) + Cv(0) ,

Comparing equations (12) and (2), the equation (12)
represents a special state-space model of linear gystem,
Applying Laplace inversion, the aforementioned
procedures can be used. For the steady-state response
computation, however, the procedure (11} can not be used
for matrix g*(7} evaluation. This matrix must be now
obtained by Laplace inversion.

8. Conclusions

The basic idea of time-domain computer-oriented
analysis of linear systems by Laplace inversion is described
in this paper. The problems of initially-at-rest response and
periodic steady-state response computation are discussed.
Various interpolations of sampled-data user's input signals
are considered. Either s-domain transfer function or
two-graph modified nodal approach can be assumed as the
model of linear system,

The described principles have been implemented in a
Turbo Pascal unit used as a part of the CAD system NAF,
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