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Abstract \

When designing SC filters, the question of
charge transfer functions and chain parameters
becomes very interesting. A complete analysis of this
question based on standard charge conservation
equations and their solution by algebraic cofactors
is presented here.

First, the analytic method used is reviewed (both
a standard and a modified nodal voltage method are
used), second, the voltage and charge transfer
functions of a standard SC four-port model are
discussed (including some special cases, such as SC
circuits using full bilinear simulation of resistors),
and, finally, a chain parameters analogy Jor SC
circuit is derived (including special cases with non
existing input/output nodes in one phase).

Further possible ways to establish chain
parameters are presented, and the relation between
trace parameters of a chain matrix and standard
transfer functions is discussed. The entire solution is
demonstrated with some simple examples, and
possible methods of computer-aided evaluation of

Qe transfer functions are briefly discussed. /
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1. Introduction

In designing SC filters from analogue prototypes
with imitance convertors and designing SC filters with OTA
amplifiers in current mode (see also [10]), the use of charge
transfer functions and chain parameter analogies seems to
be very efficient. In the following article, first the analytic
charge conservation method used will be reviewed and then
the charge transfer functions and chain parameters of SC
circuits will be derived.

2. Charge Conservation Equations

The SC filter design is carried out for idealized SC
circuits for many practical reasons, using mostly slight
modification of basic charge conservation equations. The
method with the shifted Z transform using z'* factors used
below. For more details, see [10,1]). The basic definition of
circuit equations (for two-phases switching) is given in the
matrix form as

[Qs(z) =[ Cee
Qo(2) —Co[;z'l/2

where the matrices Cgg, Cgo, Cor» Coo together form the
basic capacitance matrix of an SC circuit, which can be
rewritten, for example, as follows:

~Cgoz~?] [VE(2)
Coo ] [Vo(z)] (1)

1E CnCa--C1Caz-7 (Vie]-
825‘ C31Ca2 - Coi Coz--- | | Vag
8;0 =|CnCn---Cuulrs-| |Vio|” @

20 C5 Cyy--C51C35-+- | | Vo

In this way a described SC circuit can be seen as a
four-port, when deriving the basic transfer functions, see
Fig. 1.

Vie, QiE [ Vag, Qe
o SC circuit 1
Vio, Qio I Va0, Q20
Fig.1 :
Four-port model

The basic solution of this four-port, using algebraic
cofactors, can be written as follows:

Vig An 81 812813] | Qe

Vio| _ 1 |Anl1l12413] | Qo 3)
V2E A A2 Bof Do By | | Q2]

Va0 Az Ds1 Az. B33 ] Q20

This is, in fact, an SC analogy of impedance
parameters. The entire following solution is based on these
basic equations.

3. Voltage Transfer Functions

Voltage transfer functions are basic functions
describing an SC circuit; nevertheless, their interpretation
hides a lot of obscurities, and the results of some analytic
programs are quite confusing. Insight into the nature of this
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problem was given in [1,2]. In the following section, the
basic definitions using algebraic cofactors will be reviewed.
The obtained results are fully compatible with those
obtained in [1,2,4,10].

3.1 Basic Functions

In defining these functions, we shall start from our
basic schedule and from the superposition theorem given in
[3] which is taken as a standard for SC circuit design. Then
for the port voltage relations, we can put down:

[Vza] - [KEE KEOJ [Vw] @)
Vao Koe Koo | {Vio]

In this way, defined four-transfer functions are
assumed as the basic function set of an SC circuit, which is
used to establish any other necessary transfer functions
using a more complicated sampling system. The correct

definition of transfer functions is, therefore, of great
importance. For example:

_Vag
Kee = Vie |Vio =0,Q2e = Q20 =0 )

The zero voltage condition in the opposite phase
follows .from previous equations; the zero output charge
condition is a basic condition of the voltage transfer
function exactly as it is in the p domain. For the above
function K we can then write, based on (3)

Vae = £(A12Q1E + A12Q10),
Vie = £(A1Qie + AnQio), (6)
Vio = %(811Q1e + A11Q10) =0 .

First we calculate Q,, from the last equation, and
then, using the dopple cofactors rule (see also [11]):

LAquz - D129 = Au,zzAl (7)

we get

Vap _ A11812 = 84141 - Arg,11 (8)
Vie  Andir-Anlgg TAVPN ¢ '

The remaining three transfer functions can be
derived analogically. Here only the result voltage transfer
matrix is presented:

A1 Ao

AII.II AH.ll (9)
Ayzyr Aan |

A11.II AII,u

In this way, obtained results are the same as in
{1,2,4]. However, definition of voltage transfers using
simple cofactors, which can be found in the literature [7], is
valid only for simplified circuits with no input in the odd

phase. The output situation has no influence on transfer
function definitions

A 2 K A]j

K = —1 = ——=
BE =7 0 (10)

3.2 Bilinear Circuits

There is one exception to this, which is very
important. This exception is bilinear circuit which contains
only capacitors, amplifiers and bilinearly-simulated
resistors. These circuits do not change their structure by
switching, and therefore we can describe them using only
one condensed function (K;,), but.with two sampling times
in one period. Their consistency with the previous results
can be shown, for example, as follows:

T

' BL -
T =e? = 273 £,1, (11)

1 Re-defining the frequence scale
2 Using the definitions from [4]
Kpe = Kgg + Kpo ,KBo = Kok + Kog ,

Kpeg + Kpo
—

Kpp = 12)

3 _ Then rewriting the K, function and reducing it to
its original order.

Example for a bilinear integrator, see Fig 2.

_l 2

G
Fig. 2 ° -
Bilinear integrator
Using (9) we obtain
Cil+z7t G 2%
Kpg=-7- — Keo=-2- =
Czl—z 0'21--‘2l (13)
K __G 2~ K __Cil+2!
oE Czl-z'l 00 = Cg].—z'1
Adding the functions together we get
Cr1+2:- %421
Kpgg =Kpop = == ———ou_—" 14
se=Kpo=-g ——75 (14)
Re-defining frequence scale gives as
-1 4 =2
KBB=_CI].+22 + 2z (15)

E; 1—-2"2

And finally, hsing well-known aigebraic formulae for Ky,
we get'

(16)

It should be noted that only function K, can be compared with the transformed analogue functions via bilinear

transform. The separation of phases causes difference in the denominator of higher order function and, therefore, shifts

zeroes sustantially.
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4. Charge Transfers

The charge transfer functions will be derived below.
The basic set of equations (3) will be used again. The basic
definition is the same as for the voltage functions (4):

[Qw] - [HEE Hgo| |@Q1E

Q20 Hog Hoo | |Qi0]) °
The initial conditions are the same as for the

analogue current transfers. The results obtained are

comparable with analogue prototypes (see examples below).
For example, for H;

Qe
Qie

(17)

Hegg =

Qio=0,Vap=V0=0. (18)

4.1 Cofactor Definition

In evaluating these transfer functions, we use the last
two equations from the basic set of an SC four-port, where
the output voltages will be set to zero as well as the input
voltage in the opposite phase

Vag = £(812Q1E + A12Qi0 + A22Q2E + A52Q20)

Vao = £(813Q1E + A13Qi0 + A23Q2E + A33Q20) -
: (19)
For example, for function Hgg:
£(812Q1E + 822Q2E + A32Q20) = 0

: (20)
2(813Q1E + 823Q2E + A33Q20) = 0.

We evaluate Q,, from the last equation and use it in the first
one, where .

A
812Qi5+8nQas— T H(A1Qis+82@2e) =0 (21)

and finally

Q25 _ A1zl — B3l _ B3
Qie Al — A3l JAPYY ;)

(22)

The remaining transfer functions can be evaluated
analogically. The whole charge transfer matrix then is

B2z Ay

_ | Daazz Do
H= DBz A (23)
Dozge D322

Exactly as for the voltages, reduced transfers can be
derived using the simple cofactors. In this case, input node
reduction is of no influence, which can be seen easily from
the equation structures

Hgp= (24)

-— fo)
Doy ALY

4.2 The Modified Voltage Method

Another possibility for evaluating charge transfer
functions directly is the modified voltage method {7]. The
non-regular elements are simulated by adding an extra
equation to the basic set, which defines the current (charge)
conditions of the investigated element. This causes
expansion of the capacitance matrix by one or more
columns and rows. For the switch, which is of the most
importance now, we can write

Vzw = Vyw »

(25)

where index w'is phase, and x, y are the switched nodes.
The resulting "stamp matrix" of the switch is then

V: Vy Qs

z 1

y =1k (26)
Y ST

For the charge transfer from x to y we can write now
for the given phase (index a is the input node) -

A
sz = MQaw .

= (27)

5. Chain Parameters

Based on the previous result we can now define the
switched capacitor analogy of the chain parameters. The
definition is given for the general case, where both phases
are defined; the degenerated ones will be discussed later.
Taking into account the phasing, we can now write (see
also[6])

V.IE = all‘/gE + GII%O + alZQ?E + al!on
Vio = a1 Vag + ar1Vao + a12Q2k + 013Q20

Q1 = anVag + 691Va0 + 022Q2F +a23Q20 (28)
Q10 = an Vag + astVao + 032Q2k + 633Q20
which can be rewritten in matrix form
Vil _ lanaz} [ V2
[Ql] - [azl a2 | Q2] - (29)

Both voltages and currents are vectors and the individual
chain parameters are matrices 2 X 2. This fact is very
important for following investigation.

Vi = Vig, Vio]”

30

3= [Gn 011] (30)
ag; a11

In this way, defined chain parameters can be evaluated
practically via many different approaches, which will be
briefly discussed below.
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5.1 Basic Cofactor Definition

In evaluating the chain parameters of an SC circuit,
we start again from the basic set of equations (3). These can
be seen as the impedance parameters of the SC circuit in the
matrix form, as was said in a previous section.’ These
parameters can be recalculated as the chain parameters now,
exactly as in the analogue case. We have to only take into
account the matrix nature of the individual chain parameters
now.

Vie A An A2 Ay | [ Qe
Vio| _ 1 |Au Qs8] |Qio (33)
Vag A | A2 A1g|Az2 Asp | | Q2
Vao A3 A13|Ag3 As3 | | Q20

The transformation formulae can be obtained easily
a; = Zuzz_l1
a1y = =212 + 21125, 222
asz = Zz_lx
ax = 23, 222

(34)

and for individual sub-matrices we can write

r8n13 41,27 F A2 _Anaas
a) = gn.u Qiatz | 50 = Asz.u AAm.u ]
11,13 11.12 511122 11,12,23
L 812,13 12,13 J L Ana Oga.13
(35)
F A —=A1p ] D227 A32.13
2y = Ax&.u A12,12 agg = Ayz.13 An,n]
-85 _Ajz Q2312 A3312
L 82,12 Bi12,12 | L A12,13 812,13

5.2 Re-calculation of Admitance Matrix

Exactly as in the previous sub-section, the chain
parameters can be obtained, using the reduced admitance
matrix and the dual transformation formulas from the
impedance parameters (see also [6])

©an =-ya'yae .
ayjp = + 21
12 = )’1_2l Y11Ya1 Y22 _ (36)
a1 =Yy

— -1
a2 =.Y11Yq;

3.3 Direct Evaluating

If the admitance two-port parameters do not exist,
which is the case in the investigated imitance convertor, the
chain parameters can be obtained from the basic equations
by direct evaluation. This example is given at the end of this
article.

5.4 Relation to Previous Transfer
Functions '

For the trace ‘elements of the chain matrix (that
means a,, and g,,), we can write in the s domain the
following direct relations’ :

ay =

xJ~

(37)

il
-

a22

Now we try to derive analogical relations in the Z
domain, which will be a bit more complex because of the
switching process. Comparing the definition set (3) of the
voltage transfer functions with their chain -matrix
counterpart a,, (supposing O, = 0)

Vie = auVeg + a,1VaL

38
Vii = apVag + arrVau (38)
we see that (analogically for the charge transfers)
a;; = K™!
(39)
az = H™!

The above defined relations are valid only in the
case of a general SC circuit, that means one with input and
output samples in both phases. In the case of the
degeneration of one phase, the matrix structure is broken
and the relations are simplified to the previous ones.

5.5 Special Cases

For a large family of switched capacitor circuits,
especially when "Stray - insensitive" resistor simulation is
used, some of the port nodes, mostly the input one, are not
defined in one of the phases. Therefore, the matrix relation
between the transfers is violated, and a special approach has
to be used to evaluate the chain parameters. The use of a
zero limited help capacitor was discussed in [6]; here we

5

: Sometimes it can happen that the dopple cofactors from the definition do not exist. This case (again as with the

convertor) can be explained as follows. We decompose the dopple cofactor into simple ones again using the basic formula:

AAp22 = A1Age — B128n (31)
and suppose that the input and output nodes*have the same column:
D12z ~ A2z Byr =0 (32)
So, the investigated cofactor is zero.
’ The remaining two parameters are of the meaning of switched imitances. They can be deciphered successfully also,

see for example the switched definitions of the sensitivity functions but taking into account the complexity of this question

they will be discussed separately.
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carry out the basic cofactor definition again. The basic
structure is on Fig. 3.

Vie, Qie Vag, Q28
e SC circuit —1
Voo, Q20
Fig. 3

Three-port model

And the general cofactor solution, eliminating Q,,, Vo from
(3), is, therefore:
Vie 1 [Andady ]| [Qie
Vag| = x A1289203; | {Q2E (40)
V2o D138934833] [Q20

The chain parameters (28) can be written in the form
of

Vie = anVag + a11V20 + 012Q25 + 613Q20 (41)
Qie = anVag + axrVeo + a2:Q2E + a33Q20 '

where the individual elements are defined analogically in
relation to the previous cases as follows:

apy = 21
11 A12
_An
i = A
A
21 = A12
A
a1 =7 Q26 =Q20=0 (42)
e = Doz
= ANPR 1
azi=-—Ai§'—23 Vag =Va0 =0
+B13,22

Parameter a,, can be evaluated from the equations

AliVie = Q2eli3n + Q20813
0 = Q25022,13 + Q2003213

In the results from (43), we find cofactors of higher
order which correspond well with analogue definitions of
a,, and the solutions in (33). The case of an undefined
output node can be managed analogically. In this case we
obtain, in fact, two independent sets of chain parameters.

(43)

5.6 Computer-aided Evaluation

In the future, it will be possible to implement the
above approaches on the computer, using either a classical
cofactor algorithm (such as COCOSC or SPASO for the
modified method), or its numerical form, where Faddeyev
algorithm or some eigenvalue method can be applied. The
modified voltage method, particularly in combination with
the above mentioned algorithms, can be used for effective

semisymbolic evaluation of charge transfers. This will be
discussed in more detail in another article.

6. Examples of Evaluation

Finally, three simple practical examples of chain
parameters and charge transfers will be presented. The first
and third ones are concerned with the investigated imitance
convertor, where the chain parameters are evaluated
manually from the basic equations, using algebraic
cofactors and performing the modified voltage method to
establish the charge transfer functions. The second one is a
bilinear RC simulation, evaluating chain parameters in the
matrix form.

6.1 Imitance Convertor

Here the chain parameters of the SC bilinear
convertor (see Flg 4) will be derived, first in the manual
way, and then using the cofactor formulation.

1 2
o— )

o O

Fig. 4
Imitance convertor

The reduced admitance matrix of this circuit is (see also [4])

1+2 3 i+2 3
1|Cy ] -Cy C’lz‘§ —Clz‘i
2|¢c, -C, -Cyz~%|Cy2™1 (44)
i Clz"i —C;z‘* Cy -
3[-Cyz-%|Czm3 [C) CL+C,

In this case, the admitance parameters do not exist,
and, therefore, we have to. estabhsh the chain parameters
directly:

1 From the circuit structure we can easily see

Vie = Ve
Vio = Va0 (45)
10

an=[o 1]43‘12:[83] (46)

2 Rewriting the remaining equations from the matrix
(42) and eliminating V_3 voltages in both phases,
we obtain finally
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00 az = Y12 — YuYa ¥ae
21= 19 0
e = [C2 Gz (52)
Cil+z7! 20, 27! (47) S [P XX

— Cyl—2-1 Cy 1—2-1 -

an = 2201 z™! 0121 + 271 az = —ynys'
Cz 1-2z-1 Cg 1-2-1 10 (53)

az; = 01

The same result can be obtained using cofactor
definition (35), derived in the previous chapter.

6.2 RC Circuit

In this example, the chain parameters of the RC
simulation are derived from the admitance parameters

1 2
C
ol "|" 2
[+ _ -0
Fig. 5
RC circuit

Reduced basic matrix

1 2 i 3
1{Cy -G, Ciz=% |-Cyz—%

2-C; |Gy +Cs -C1273|(C; = Cy)z~%| (48)
ilci2=% [-Cy2-3 Cy -C

Q—sz—% (Cq - Cl)z‘é - C, + C,

Rewritten to the admitance parameters, swapping apropriate
columns and rows

1 1 2 2
11C, Gz~ |-G -Cy2~1%
iC[Z—% C1 —_C'lz‘% -Cq (49)
20f-c,  |-Ciztley + Co (Ca - C1)z~%
?—Clz"% -C (Cs - 01)2—% Cyi + Cs
And chain parameters are established using Y - A
a; =y5'y2
Co(1 +Z_1) sz—%
w o TP aa G =y (%0)
h 022'% 1+Cz(1+2_1)
Cl(l—z‘l) Cl(l—z_l)
a2 = y5
ay, = 1 -Ch ‘ Clz‘% (51)
BTcra-z gzt -0

6.3 Modified Method

Using the modified voltage method, we can obtain
the charge transfer matrix (17), which is the inverse of
parameter a,,, as will be demonstrated below. The rewritten
matrix is now

1+2 3 Q2 1+2 3 Qs

1iCy - 0 Clz‘i —Clz’i 0
2(C, -C, 1 —sz—% sz-i 0
1 0 0 [0 0 0 (54)
iClz‘i —C’lz‘é 0 |1C, -, (U s
3 —022—% CzZ—% 0 [C, Cr+C1
0 0 0 |1 0 0

The reason the switch is added is to perform the
output condition of the charge transfer: to set the voltage to
zero. The charge through this switch can now be calculated

Hpp = 219 g = 219y
A A (55)
Hop = —1& Hoo = L1g, *
A A
therefore
_Cz(l + Z"l) _ 2022_1
| G(l-2z71) Ci(1-2z71)
H= 2021_1 Cg(l + Z_l) (56)

TG(1-z"Y) G(1-zY)

The inverse rule H=a§§ can be shown easily by

‘evaluating the factor of

2
detH = (%) . (57)

1

7. Conclusion

Solving the analogy of two-port parameters in the Z
domain, we tried to sketch a more generalized approach to
SC circuit analysis which can be successfully applied, for
example, for general amplifier use (OTA amplifiers, etc.) or
for switched current technology, which has a lot of
similarities with SC technology. A full solution of SC chain
parameters and charge transfer was presented here, and
some simple examples were given. The same approach can
be easily developed for different two-port parameters or
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mixed transfers, which are used, for example, in sensitivity
analysis.
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