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Abstract \

Automatic detection of epileptiform patterns is
highly desirable during continuous monitoring of
patients with epilepsy. This paper describes an
unconvential ~ system  for automatic - off-line
recognition of epileptic sharp transients in the
human electroencephalogram (EEG), based on a
standard neural network architecture - multi-layer
perceptron (MLP), and implemented on a Silicon
Graphics Indigo workstation. The system makes
comprehensive use of wide spatial contextual
information available on 12 channels of EEG and
takes advantage of discrete dyadic wavelet
transfrom (DDWT) for efficient parameterisation of
EEG data. The EEG database consists of 12
patients, 7 of which are used in the process of
training of MLP. The resulting MLP is presented
with the testing data set consisting of all data
vectors from all 12 patients, and is shown to be

capable to recognise a wide variety of epiIepticj

anals.
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1. Electroencephalogram

If a pair of electrodes attached to the scalp of a
human subject are connected to a high input impedance
differential amplifier, a time varying electrical signal is
observed. This signal, called the electroencephalogram

(EEG), is of typical peak-to-peak amplitude 10- 100 pV
and varies depending upon the brain state of the subject,
i.e. a person is awake, asleep, under anaesthesia etc. It is
characterised by potentials fluctuating over the brain in a
frequency range of approximately 0.1 - 100 Hz. According
to the predominant frequency of the signal, EEG has been
historically categorised into the following broad groups of
activity (Fig. 1):
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Fig.1 EEG activities
a) gamma activity,
d) theta activity,
f) delta activity

b) beta activity, c) alpha activity
e) mixed delta-theta activity
o d-activity: 0.5-4 Hz
e O-activity: 4 -8 Hz
e o-activity: 8- 12Hz
e o-activity: 12 - 14 Hz
e B-activity: 14-22Hz
e y-activity: 22 -30Hz
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2. The EEG of Patients with Epilepsy

The characteristic activity observed in the scalp
EEG of patients with epilepsy are sharp fransients (ST's)

(Fig. 2).
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Fig.2 . Spike
. Sharp wave
: Spike-wave complex
: Slow spike-wave complex
: Polyspikes
Runs of rapid spikes
‘g: Small sharp spikes
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¢ spike (duration 10 - 70 ms)

. sharp-wavé (duration 80 - 150 ms)

e classical spike-wave complex (3 - 5 /s)
¢ slow spike-wave complex (1 - 2.5 /s)

¢ polyspikes (20 - 60 /s)

¢ runs of small spikes (10-20/s)

¢ small sharp spikes (low voifage spikes)

3. Detection of Epileptic Discharges in
EEG

The detection and classification of ST's by visually
scoring the EEG record is a rather complex operation.
Besides being a laborious process, visual screening of the
EEG record is  highly dependent on the
electroencephalographer's  (EEGer's)  training and
experience. As a result, there exists disagreement among
EEGers, as well as inconsistencies in the same EEGer, in
the detection of individual ST's [1].

Long-term monitoring of patients with known or
suspected epilepsy can lead to lengthy EEG records. In
recent years, ambulatory monitoring has become widely
used, and it may involve 24 hours or more continuous EEG
recording. Hence, automated methods for EEG analysis
in such cases provide an attractive alternative to visual
analysis procedures and can offer several advantages over
visual scoring;

e They can ease the work-load of the EEGer
by providing off-line, faster than real-time
analysis of lengthy records.

e They can provide reliability and repeatibily in
the analysis of EEG data.

e They can offer a tool for detailed quantification
of the ST activity, which could be used to
study the effect of drug treatment, :

e They could eventually lead to a comprehensive
definition of an ST, and thus contribute to
the standardisation of ST detection.

4, Methods of Automaﬁc Detection of
Epileptic Sharp Transients

Several techniques have been applied to the
detection of epileptic sharp transients in the EEG signal.

| These include template matching, parametric methods,

mimetic methods,  syntactic methods, expert systems,
artificial neural networks.

Artificial neural networks (ANN) represent a
powerful method for recognition of epileptic patterns in
EEG [2]-[8]. An ANN is a teachable non-algorithmic
information processing system, that consists of densely
interconnected simple neuron-like elements (neurons or
nodes). Information is represented in the strengths of
connections between elements. Among various types of
ANN designed so far, multi-layer perceptrons (Fig. 3)
trained with the backpropagation method have been the
most popular due to their flexibility and high efficiency.
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Fig.3 A typical multi-layer perceptron architecture

S. Recognition of Epilepsy by
Multi-layer Perceptron

5.1 Data Preprocessing

5.1.1 EEG Database |

e Number of patients: 12 ( denoted anonymously
as AB,CDEFHILIKLM)

» position of electrodes:
Fs— T4, T4 — T, Fps — F4, F4 — C4
C4 = P4, Py ~02, Fpy — F3,F3 - Cs
C3~P3,Ps— O, F7-T3,T3—-Ts
(The Intgmational "10-20" Electrode System)

¢ type of recording: bipolar

e Number of channels: 12

¢ Bandividth of recorders: 0.2 - 32 Hz

¢ Sampling frequency: 64 Hz

¢ Digitisation: 8-bit precision

* Storage media: Hard disk, floppy disks

» Storage format: Binary unsigned char

The 12-channel EEG recordings of each individual
patient were visually scored by expert neurologist (Dr.
Mokrari). These recordings were classified into two classes:

e epileptic data class
+ normal data class

- by assigning each 1-second segment a label of 1 (epileptic
segment) or 0 (normal segment) on the time scale of 1
second. The time scale of 1 second is generally accepted
time scale for both automatic and visual detection of
epileptic events (Fig. 2). Thus for each individual patient
we obtained gold standard epileptic and normal 1-second
segments of EEG data. The characteristics of patients’s
data files are covered in Table 1.

Each channel's 1-second segment of EEG was
parameterised by 6-dimensional vector of instantaneous
maximum powers in 6 different frequency bands. This type
of parameterisation was performed by means of the
discrete dyadic wavelet transform. As a mother wavelet
Junction we used the first derivative of a Gaussian
function{2],[10]: ' g

v =

e (:_f_z_ )
J2no 202

5.2 Training of MLP

The dataset consisting of patients AB,C,D,E,F.H
contained 382 epileptic and 8384 normal 1-second
segments of 12-channel EEG (patients I,J, K,L,M were not
included in the MLP training database). Epileptic events in
this dataset covered mainly spike-wave complexes (2-4 /s),

polyspikes and epileptic K-complexes, and were
representative examples of these types.

Our aim was to design a powerful
patient-independent MLP architecture for off-line

instantaneous processing of all 12 channels of EEG. The
process of design consisted ‘of the fraining phase and
testing phase. The training phase was broken into two
stages: -

s Creating a training database
» Finding an optimal MLP architecture
5.2.1 Creating a Training Database for MLP

The training database of neural network should
contain equal numbers of epileptic and normal vectors.
Otherwise after training, the network would prefer

Table 1
Patient A B [} D E F H I J K L M
Recording lenght 1808 938 1146 624 1524 1451 1274 1844 1862 1819 1840 1624
Number of cpileptic 1-s segments 23 7 10 72 153 63 54 74 244 602 412 412
Number of normal 1-s segments 1785 931 1136 552 1371 1388 1221 1770 1618 1217 1428 1212
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" classification of EEG patterns into the class of normal
vectors, because in majority of EEG recordings this class is
dominant. This is unacceptable, since our primary idea was
to design an automatic machine for recognition of epileptic
events. Another possibility was to create a training
database from all epileptic vectors and equal number of
normal vectors obtained by random picking of all normal
vectors. However, if we had used only 382 epileptic and
382 normal vectors, there would not have been enough
training data for a single 12-channel-input MLP [9].
Moreover, if we had used only 382 normal vectors, we
would have voluntarily got rid off important normal
vectors and thus deformed the training process. Therefore
we decided to create a training database for a single
12-channel-input MLP containing 8000 normal and 8000
epileptic vectors. This training database consisted of
training set and cross-validation set, each having equal
numbers of normal and epilepti¢c vectors (4000). 8000
normal vectors were obtained by random picking of 8384
initial normal vectors. Initial 382 epileptic vectors were
split randomly into two halves (191 vectors). Each of such
halves was duplicated 21 times. As a result we obtained
4011 epileptic vectors for each half, from which we picked
randomly 4000 vectors for both the training and
cross-validation sets. Putting together, we obtained the
training and cross-validation set, containing 8000
non-overlapping 72-dimensional EEG vectors each.

5.2.2 Finding an Optimal MLP Architecture

To find an optimal MLP architecture for solving a
~ given problem means to find an optimal number of layers
and nodes with respect to average and final error rates.
According to [2] we decided to design an MLP with the
following specifications:

o Number of hidden layers: 1
¢ Number of input units: 72
¢ Number of hidden-layer neurons: 2 - 10

e Number of output neurons: 2 (one for epipleptic
data class, one for normal data class)
[ ]
e Parameter § of neurons: 1.00

o Coefficient o of momentum term: 0.01

The only unclear matter was the number of
hidden-layer units. The values of average and final error
rates corresponding to different MLP architectures are
present in Table 2 (The number of data passes through the
network was 1500. The average error rate was computed
during the last 20 % of data passes through the network.).

According to the results in Table 2 we made a
decision to use the MLP structure 72-6-2.

5.3 Testing of MLP

“In this phase the MLP 72-6-2 (computer program
written in C code) was presented with data from the
training set (patients AB,CD.EFH) and also with
never-before-seen data (patients LJKLM). The
classification results are shown in Table 3, where as a
measure of the quality of MLP classification capabilities
we used the following criteria:

¢ Number of true positives
¢ Number of false positives
o Number of true negatives
o Number of false negatives
o Sensitivity of MLP

¢ Selectivity of MLP

¢ Specificity of MLP

e Accuracy of MLP

True positives (t,) are events detected by MLP which are
indeed gold standard epileptic events.

False positives (f,) are events detected by MLP whxch are,
in fact, not gold standard epileptic events.

True negatives (t,) are events rejected by MLP which
indeed were not gold standard epileptic events.

False negatives (£,) are events rejected by MLP, but which
were, in fact gold standard epileptic events.

Sensitivity of MLP (or recall) is defined as: "What

percentage of all gold standard epileptic events were
detected by MLP?"
Sensitivity = tl,:’—, A

Selectivity of MLP (or precision) is defined as: "What
percentage of all events detected by MLP were actually
gold standard epileptic events?"

oy

Selectivity = ey

Specificity of MLP is defined as: "What percentage of all
gold standard normal segments of EEG were recognised by
MLP?"

Table 2

MLP structure 72-2-2 72-3-2° 72-4-2 72-5-2 72-6-2 72-7-2 72-8-2 72.9:2 72-10-2
Average error rate [%) 56 3,1 33 31 30 30 30 3,1 30
Final emor rate [%)] 5.7 3.1 33 31 29 3,0 3,0 3,1 30
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tht+/p

Accuracy of MLP is defined as: "What percentage of all
epileptic and normal segments detected by MLP were
actually gold standard epileptic and normal segments?"

Specificity =

tp+ty,
tptfuttntfp

The total number of gold standard epileptic events
in each recording is the sum of true positives and false
negatives (f,+/,). The total number of gold standard
normal segments in each recording is the sum of true
negatives and false positives (¢, + /). Finally the length of
recording corresponds to the sum of true positives, false
negatives, true  negatives and false positives
Up+Suttut[p)

Accuracy =

6. Conclusion

In this paper we described a powerful off-line
system for automatic detection of epileptiform patterns in
the human EEG using the discrete dyadic wavelet
transform and the multi-layer perceptron. The system was
realised as a computer program running on a Silicon
Graphics Indigo workstation. Its classification capabilities
were tested on a statistical group of 12 patients, 7 of which
were originally used for training of the MLP.
Classification ‘results shown in Table 3 proved that this
system is capable of succesful recognition of a wide
spectrum of epileptic and normal signals, yet it still has a
large number of false positives to be seriously considered
for use in a clinical environment. Most of the false
positives come from muscle artifacts which are impossible
to eliminate unless an architecture which can enable the
system to evaluate longer EEG epochs is used. Such an
architecture can be developed by adding additional
modules which can process long EEG epochs and extract
temporal contextual cues needed for the elimination of
false positives.
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