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4 Abstract h

Our aim is to present some aspects of the
mathematical theory of strange behaviour of nonlinear
systems, especially of systems with symmeltry. Proofs
are emitted, the interested reader is advised to
references. Our presentation is inevitably selective.
We focus on parts of the theory with possible
applications to electronic circuits and systems which
may display chaotic behaviour.
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1. Introduction

It is known that many natural nonlinear systems
yield exceedingly complex pseudorandom or chaotic
behaviour even though the governing laws are
deterministic, and that this behaviour arises primarily from
the nonlinear nature of the systems considered.

These surprising phenomena have been already
known since Poincaré but until the present their both
theoretical and practical significance have not been fully
appreciated. To the advances of understanding of these
seemingly our intuition contradicting events the advent of
the computer was essential, but at the same time it was
recognized that the deep mathematical comprehension was
equally important. "Reams - of computer simulations,
without some form of explanation analysis, are not very
helpful" [8]. Nowadays we witness the explosive
development of the subject. Many profound mathematical
results have been uncovered but solutions to some principal
questions are still hidden in mystery.

- In contrast with linear systems there is not a general
theory for nonlinear systems. But there is an agreement
that at least some nonlinear systems can be approximately
understood by universal model. By creating such
paradigmata a mathematical theory of dynamical systems
is very useful.

A system is something having parts which is
perceived as a single entity. The parts making up system
may be clearly or vaguely defined. The interesting thing
about a system is the way the parts are related to each
other. For the systems studied in mathematics, the parts
and their relations must be so clearly defined so that we
can single out a particular set of these relations as

completely characterizing the state of the system. (The
mathematical system is evidently oversimplified in
comparison with the natural system being modelled.)

A dynamical system is one which changes in time
(what changes is the state of the system). A mathematical
dynamical system then consists of the space of states of the
system together with the rule called dynamics for
determining the state which corresponds at the given
future time to a given present state. The task of
mathematical dynamical system theory is then to
investigate the patterns ‘'of how states change in the long
run, after transients died out. We will consider mainly
dissipative systems (dissipation is the reason why
transients cease).

A dynamical system is consequently a pair
comprising the state space M (usually R") and a collection
(f*) of maps M — M called the dynamics or flow. The
initial condition xe M gives after time  a point f'x . When
(/") is understood we may write f'x= x (1). The map r—x(1)
is the trajectory of xe M . Its image is the orbit O(x), and
orbit closure is O(x). One says that a is a fixed point if its
orbit consists of a only. For a map /', this means fa = a.

The long term behaviour of the trajectory of x is
conveniently studied in terms of limit sets. The omega
limit set w(x) is the subset of M that x(f) approaches as
t — oo, Similarly we can define o.-set as subset that x(1)
approaches as t— —ce, A point x (or its trajectory) is
attracted to the set X if O(x) is compact and w(x) C
This implies that the trajectory of x eventually remains in a
neighbourhood of K . A set S is attracted to X if every point
in S is attracted to K . A point x is periodic if there exists
T>0 such that x(T) = x . Then x(t+T) = x(t) for 1>0. A
periodic orbit which is not stationary point is called cycle.

Besides asking "what set attracts a given trajectory
7 we can also ask "which trajectories are attracted to a
given set 7" . An interesting case is that of an attractor, An
attractor is a subset A of M that has a compact
neighbourhood U such that ffU) < U (invariance of U )
and Qo f{(U)= . It can be shown that, under appropriate

conditions, an orbit subjected to small random
perturbations will almost certainly approach an attractor
[15]. Random fluctuations are always present in physical
experiments and numerical iterations of maps by computer.
Therefore, the outputs of many physical or computer
experiments are attractors.

Some attractors display very remarkable properties,
especially some kind of sensitive dependence on initial
conditions. If an infinitesimal change 8x (0) is made to the
initial conditions, there will be at time ¢ a corresponding
change Ox(t). We will say that we have sensitive
dependence on initial conditions if Ox(t) grows
exponentially with ¢. This fits well with the commonplace
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observation that small causes may have large effects.
Attractors with this feature are called strange attractors
[14]. So far there seems to be no universally accepted
definition of strange attractor, but this concepts
nevertheless useful as such in analysing the results of
physical and computer experiments. Time evolutions that
show sensitive dependence on initial conditions are called
chaotic, and study of chaos in natural phenomena has
reached considerable popularity and led to a large number
of publications (e.g. [17],[18]).

Strange attractors look strange because they are not
smooth curves or surfaces but have noniteger dimension,
they are fractals. Moreover, while strange attractors have
finite dimension, the time frequency analysis reveals a
continuum of frequencies.

Poincaré, among many fundamental discoveries in
dynamics, found one of the primal sources of chaotic
dynamics: the homoclinic orbits. He considered trajectories
asymptotic, in positive or negative time, to a fixed cycle ¥y.
We call the set of points attracted by 7y the stable manifold
W(y) ; and the stable manifold of y for the time-reversed
flow the unstable manifold W*(y) . Now W(y) and W(Y)
intersect at all points of y, but they may also intersect at
other points. A point ye W5(y) n WY(y)\ is called
homoclinic point belonging to y. Clearly y is doubly
asymptotic to ¥, that is o(y) = a(y) =Y. The whole orbit of
v (in positive and negative time) consists of homoclinic
points. We call a homoclinic point y fransverse if the
stable and unstable intersect transversely aty .

Poincaré's fundamental disclosure was that if y is
transverse homoclinic point then there are infinitely many
different homoclinic trajectories in WS(y) » W¥(y and
they approach ¥ in very different ways. The significance of
this is that in every neighbourhood of the homoclinic
point, y contains other homoclinic points exhibiting
infinitely many different kinds of limiting behaviour, and
the same applies to each of those other homoclinic points,
and so on. The system thus exhibits extreme instability
with respect to initial values. Poincaré himself was struck
by the complexity of such dynamics. His intuition that
transverse homoclinic points exist very commonly has
proved to be fully justified; in recent years they have been
shown to exist in many "natural”" dynamical systems.

This kind of behaviour can be demonstrated
experimentally in a wide variety of practical nonlinear
systems. Completely irregular behaviour of very simple
electrical circuits is often cited example and in the present
is an object of intensive research. It can destroy the normal
function of otherwise carefully designed system and
therefore useful theory of nonlinear systems should provide
criteria for design of parameter intervals where chaotic
behaviour may or can not occur. Detailed "roads to chaos"
were investigated; namely scenarios in which a system
with simple time evolution becomes chaotic when some
parameters are changed.

Let the dynamical system depend on a parameter 1,
called a bifurcation parameter. Typically, L will be a real
variable, but it could also be a collection of such variables.
If the qualitative nature of the dynamical system changes
for a value o of p ,one says that a bifurcation occurs at

Mo-

The bifurcation theory of attracting sets is
particularly interesting. A striking fact is that for some
value of the parameter we find only a nonchaotic attracting
orbit (a limiting cycle, for example), whereas at some other
value of the parameter a chaotic attractor occurs. It is
therefore natural to ask how the one comes from the other
as system parameter is varied continuously. This problem
is complicated, but fortunately, a relatively small number
of common transition scenarios are beginning to emerge
from theory and experiment. The most spectacular of these
scenarios is Feigenbaum's period doubling cascade.

2. Period doubling bifurcation

One of important developments of the theory was
the realization that regularities can be expected whenever
chaos arises through an infinite series of period doubling
bifurcations as some parameter of the system is varied
continuously. This "route to chaos" has also been observed
in experiments on nonlinear oscillators [9],[10], hybrid
optical systems, heat conduction and others {12].

Let f* M — M be a smooth map. We say that a fixed
point a of f is hyperbolic if the tangent map
Tof: TaM > T, is hyperbolic, i.e. if the spectrum of Taf
is disjoint from the unit circle {z: |z| = 1}. ( The tangent
map for maps of manifolds plays the role of the deprivative
Df for maps of Banach spaces.) In particular, a is called
attracting if the spectrum is contained in {z: |z| <1} and
a is repelling if the spectrum is in {z: [z| > 1}.

Let us restrict the time to integer values, in terms of
some arbitrary unit, then the time evolution is described by
the iterates of a single map f=f1. We then have a discrete
time dynamical system. For such a system let be defined a
parametrized family of maps (fit) for p € J ( where J is an
interval of R ). Suppose that [tp € J and that fy has a
hyperbolic fixed point xo. Then by implicit function
theorem (see e.g. [16]) x¢ is an isolated fixed point of fy
and there is a differentiable function p € x(u) defined in a
neigbourhood of 1g in J such that x(it) is an isolated fixed
point of /and x(Mg) =} . In view of this we should look
for bifurcations at values of p such that x(u) is not
hyperbolic.

Suppose now that the only eigenvalue of Dyof on
the unit circle is simple and equal to -1 . Then generically
(for a discussion of "genericity" see [16), p. 44) a period
doubling bifurcation occurs, i.e. a periodic orbit of period 2
is present either for pu>pg (direct bifurcation) or for
M < no (indirect bifurcation).
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The period doubling bifurcation is also called flip or
subharmonic bifurcation.

Flip bifurcation for a map may occur in succession
and accumulate to a limit, with the attracting fixed point
successively being replaced by periodic orbit of period 2"
for n = 1,2, ... ~>oc0. The resulting period doubling
cascade is known as Feigenbaum bifurcation. One great
interest of period doubling cascade is that remarkable
formula holds:

lim Aoboy

=0 = 4.66920 .
1o Apy1Ansz

@)

where 4,4,,, are intervals between the places where
the successive period doubling occur. These points
accumulate to A . Beyond this point the system behaves
chaotically, but there are again "windows" of regular
behaviour (see nice pictures in [9], [10]).

This remarkable formula was discovered by M.
Feigenbaum, a physicist at Los Alamos numerically. He
was playing day and night with computer [17].
Remarkably, 8 is universal in the sense that many different
families (fit) give the same value 3. Behaviour of systems
depend not on the detailed physics or model description
but rather on some general properties of the system.

Having discovered the universality of 3
experimentally, Feigenbaum went on to propose an
explanation of it which was inspired by the renormalisation
group approach to critical phenomena in statistical
mechanics, but he did not give a complete mathematical
treatment of the question. This was later supplied by O.
Lanford [12]. Interestingly his mathematically rigorous
proof was computer - assisted.

Bifurcation to chaos through period. doubling
bifurcations appears to be a common feature of systems
which are approaching so called homoclinic tangency [16]
between stable and unstable manifold of period orbit. These
manifolds at first do not intersect, become tangent and
then intersect transversely. The results of Newhouse [13]
then imply that we can expect infinitely many stable
periodic orbits to coexist near those at which the tangency
oceurs. :

There is very remarkable fact that complicated
nonlinear systems with more then one degree of freedom
have the same bifurcation diagram as the seemingly simple
one-dimensional unimodal system so called logistic model.
An intuitive argument for this is the following: Should the
specific iteration function contract N-dimensional volumes
(a dissipative process), then in general is a one direction of
slowest contraction, so that after a number of iterations the
process is effectively one-dimensional.

Period doubling bifurcations has been observed in
many experiments. Perhaps the simplest example is that of
periodically dripping tap : as the tap is opened more the
period doubles (under certain conditions) and eventually
the stream of water becomes chaotic.

The measured values of Feigenbaum's universal
number 8 are consistent with the theory [12], but they are
accurate to only about 5% at best because the rapid
convergence rate of the doubling sequence makes it very
difficult to observe many doubling.

Behaviour of this kind is often present in nonlinear
electronic circuits. It is very likely that it has frequently
been observed in laboratory experiments, but that these
observations have been misinterpreted with failures. A
remarkable exception is the paper of van der Pol and van
der Mark that appeared as early as 1927 [9]. They studied
a neon bulb oscillator. They observed a creation of
subharmonic 1/2, 1/4, e.t.c. with intervals of "irregular
noise". They used a telephone receiver as an indicator. We
know now that they listened to chaos.

In [18] is reported a direct measurement of a
bifurcation diagram for a driven nonlinear semiconductor
oscillator, showing successive subharmonic bifurcations to
J7/32 , onset to chaos, noise band merging, and intensive
noise-free windows. The overall diagram closely resembles
that computed for the logistic model. Prof. Chua and his
co-workers have been working on application of modern
mathematical methods and numerical algorithms on these
problems for two decades with a remarkable series of
publications. So called Chua's circuit is at present object of
intensive research. For other examples see the list of
references, especially two nice articles by Prof. Hasler
[9],[10] and also two special issues [19],{20].

3. Equivariant dynamics

Symmetries change the types of bifurcations that
may be expected in dynamical systems and therefore the
existence of symmetries should be carefully noted. As we
shall see, the simplest nontrivial symmetry Z, = {*/}
acting on R may be expected, for example, to affect period
doubling cascades and lead naturally to merging of
attractors.

Discrete dynamics with symmetry is determined by
a mapping f: M — M which commute with the action of a
group G so that '

f.1(x) =1.f(x) forall 7€ G,xe M. )

One also says that f is G-equivariant.

If f is iterated, then typically the successive
images of a point x settle down towards some attractor,
which ranges in complexity form a single point to an
intricately structured chaotic set. The symmetry of / places
constrains on the form of the attractor. In particular, we
can define the symmetry group X of the set 4 to be the set
of =X that leaves 4 invariant, that is, such that T(A) =
The symmetry of a point x is then defined as the isofropy
subgroup

Iy ={te G: tx=x}, Zy cG 3)
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Moreover, let

Fix(Z)={ye M: oy=y, Voe X} C))]

be the fixed-point space and assume, that G acts absolutely
irreducibly on M , that is, that the only liner maps on M
that commute with G are scalar multiplies of the identity,
thus [2], [3]

(df)op=cM) . )

Let g R2XR — R® be a one-parameter family of
G-invariant mappings. We assume that G acts absolutely
irreducibly on R, It follows that x(0) is a "trivial" fixed
point for g and

(dg)op=c(M) 1. ©)

For the period doubling bifuracation it must be
c(0)=-1. The largest subgroup that leaves Fix (Z)
invariant is N(Z), the normalizer of X in G . It follows
that gl Eixz)x commutes with the action of N(Z)lx.
When dim Fix (£) = 1, either N(£)=X or N(Z)lz=Z
(where Z5 = {11} is the simplest nontrivial symmetry) [2].

In the first case, we expect a standard period
doubling to occur. In the second case, when N(E)l r=Z,
as the parameter is varied, we might expected the trivial
fixed point to undergo a bifurcation to a nontrivial one and
each of the nontrivial fixed points then undergoes a period
doubling sequence. Each of these sequences seems to
behave like the simple logistic equation. This results in a
very complicated behaviour with chaotic regimes.

Two more interesting phenomena are worth
mentioning with connection with symmetry: symmetry
breaking [6], where the attractor (usually just a point) loses
symmetry, and the reverse process, symmetry creation [3}.

Suppose that g is G-equivariant and G acts strongly
irreducibly on R”. The symmetry of solution x was defined
to be the isotropy subgroup Zx. Note that £o =G , that is,
the trivial solution x = 0 enjoys the full symmetry of the
group. Suppose there is a singularity at the origin of g (i.e.,
g = dg/dx =0, a necessary condition for bifurcation) and
the trivial solution is stable for A< 0 and unstable for
A>0. Then, as A is varied through 0 , the system jumps
to a new state x# 0 and the new solution will have less
symmetry then the old. The symmetry has broken
spontaneously. (For example, consider the buckling of an
Euler column: in the planar model the vertical column
enjoys Z, symmetry before it buckles and no symmetry
after.)

Chaotic attractors can undergo a reverse process,
symmetry creation. This phenomenon is called a crisis and
its prevalence in symmetric dynamics is explained by a
theorem of Chossat and Golubitsky [3]. Symmetry
increasing crises have been observed experimentally by
Ashwin [1] in networks of three and four coupled identical
electronic oscillators.

4, Conclusion

The aim of the article was to present some basic
concepts and ideas of the mathematical dynamical system
theory, especially of systems with symmetry. Respect was
paid to possible applications to the theory of irregular
behaviour of nonlinear electronic systems. The
presentation is necessarily incomplete and without
mathematical proofs. The reader, who is not supposed to be
a mathematician, is advised to the selective list of
references. The success of "chaos” has made it a
fashionable topic and the number of publications in this
field is growing exponentially. It is hoped that this article
will provide at least a guideline to it.
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