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Abstract

This paper deals with the generating of three-
dimensional (3-D) images by octree and using the
application of tesseral theory in image processing.
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1. Introduction

Image representation is an important technique in the
domains of computer graphics and image processing.
From the large range of many representation techniques
the hierarchical data structures as quadtree [8, 11] and
octree [5] seem to be the most important. The quadtrees
are used to represent and to process two-dimensional (2-D)
image. Octrees are three-dimensional extension of
quadtrees. Octrees have been used to represent 3-D solid
objects [6, 9, 12]. ,

The 3-D representations of solid objects create the
base for computer graphics, development of robotics and
other vision systems. The most widely used representation
schemes are following {1, 13]: Boundary representation
(B-Rep), Constructive Solid Geometry (CSG) and Octree
representation.

A solid object as 3-D volume encoded by a set of
surface elements is defined in the B-Rep method (see
figure 1). Sections of planes and quadratic surfaces as
spheres, cylinders and cones are typical surface elements.
A graph structure is used to express the relations among
the surface elements. The nodes representing surface
elements are connected to other sharing common boundary
edges and to nodes representing the boundary edges which
are, in turn, connected to representing vertex points,

In the CSG method, volume elements rather than
surface elements are used to bind 3-D volumes. Common
volume elements are blocks, prism, spheres, cylinders,
cones and tori. These clements are combined by set
operations into the modeled objects. The CSG tree
structure is used to relate the volume elements. In such a
tree, leaf nodes represent the volume elements, branch
nodes represent the set operations, and the connecting arcs
represent 3-D geometric transformations.

e

Fig. 1. Boundary and octree representations of the 3-D object (bali)

An octree representation of 3-D object is the tree
structure describing selective recursive subdivision of
object space. Object space can be represented by tree
structure where the root node represents whole object
space and 8 descendant nodes represent 8 primary
subdivisions of object space into 8 equal volumes or cubes.
Further levels in the tree structure are related to recursive
subdivisions of space. A node will have descendents only if
associated volume of object space is not homogeneous.
Recursion continues until either all the nodes are
homogeneous or until the resolution is achieved. A
important form octree of 3-D solid object representation is
the linear octree [4]. For encoding and image processing
by linear octree we can use tesseral theory [2]. The tesseral
theory is very interesting for computer processing of data
in both 2 and 3 dimensions. The tesseral theory contains
addressing theory and tesseral arithmetic.

2. Linear octree

Let's have a 3-D digital image O. We shall assume
that image O is sampled at {(i+1/2, j+1/2, k+1/2)e X x Y
x Z; i, j, k integers in <0, 2"}, where (X, Y, Z) is 3-D
Cartesian co-ordinate system in which the image O is
defined. The sample points create a lattice L. It is given a
3-D lattice point (X, y, 2) € L. The unit volume {(x, y, z)e
XxYxZ; x-1/12 £ x <x+1/2, y-1/2< y< y+1R2,2-112 <
z < z+1/2} is called the voxel which is centred at (X, y,
2). The union of a set of voxels is 3-D digital object {14].
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An octant of size 2™ for some integer m > O is semi-close
cubic volume {(x,y, z)e X x Y x Z; 2™ < x <2™(i+1),
M <y <2M(j+]), 2™k < z < 2M(k+1); i, j, k integers in
<0, 2™y}, where n is an integer such that the volume of
interest is contained in an octant of size 2”. An octant of
size 1 is voxel. We say that an octant of size 2™ is a level m
octant. The origin of an octant is the point in the octant
with the smallest co-ordinates. A level m octant consists of
8 level (m - 1) sub-octants. There are numbered 0, 1, 2, 3,
4,5 6 to 7. The value of an octant is 0 (VOID) or 1
(FULL).
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Fig. 2. Octree representation of 3-D object

We will consider the 3-D digital image which
contains 2" x 27 x 2" array of volume e¢lements-voxels and
its hierarchical decomposition into octants. This process is
then repeated for each sub-octant until an octant is not
homogeneous. The process is represented by a tree of
degree 8 in which the root node represents the entire
image, and the leaf nodes correspond to those cubes of
array for which no further sub-division is necessary. The
octree is tree in which each node is either terminal (leaf)
or internal. The terminal nodes represent a coherent
octants where every voxel has the same value (VOID,
FULL). Internal nodes are not coherent octants and are
sub-divided into further octants. The atomic node
represents the smallest possible octant, corresponding to
individual voxel in the picture. Atomic nodes are always
leaves and all large nodes are called molecular nodes. An
internal node (called parent) is sub-divided into 8 other
nodes, these are called its children. The root node
represents the whole picture. The depth of node in the

octree is the number of its ancestors. The root node has
depth 0. The atomic depth of picture specifies how big 3-D
picture can be represented. A full octree representing the
3-D image has

8 +1

Nyp=Y2'x2"x2' =1+8+8"+..+48" =

i=0

M

nodes.

A wellknow form of the 3-D solid object
representation is the linear octree [4]. The linear octree is
a hierarchical data structure consisting of a pointerless list
which contains only terminal nodes in octree. Internal
nodes are omitted as of no interest. Linear octree is
designed primarily for binary pictures. All FULL leaves
are stored in octree, VOID nodes are omitted. The
terminal nodes in the linear octree are labelled by
locational codes [5] which identify their position in the
tree. Because each terminal node is individually identified,
it is possible to remove all nodes of value VOID (the
supplement of 3-D object). Nodes include the identity of
each as nodal information which has certain advantages.
The code may be disordered without the loss of meaning.

Locational codes are important labels for octree
nodes. The codes give the position of the octree node in
numerical form. A particular numerical label (number)
is assigned to each terminal node depending on the
direction of the route trough the octree from the root to
node (Fig. 2). This gives an octal number. The number of
digits in the octal number corresponds to the depth of the
node in the tree. The variable length of codes cannot be
stored directly into the memory system. Therefore we must
also separate the code using an additional digit "X" as a
postfix in place of irrelevant digits.

3. Tesseral addressing and tesseral
arithmetic

For image processing by linear octree the tesseral
theory [3, 7] we can be used. The tesseral theory is based
on an approach to image processing as of groups of
tesseral elements (tiles). The tesseral elements are
identically shaped elements. For 3-D space we use cubes
that correspond to voxel in the octree. The original
elements are called atomic tiles, the larger ones molecular
tiles. The molecular tiles can be themselves combined into
even bigger ones. Tesseral image is a group of molecular
and atomic tiles.

In the division of 3-D space into identically shaped
elements and combination of tesseral elements into large
clements we must determine how many tiles are to be
grouped together to form a larger one and determine their
position in space. Rather than labelling atomic tiles by a
Cartesian co-ordinate value, we may use a tesseral address.
The tesseral address for 3-D space is an octal (base 8)
number giving the position of the atomic tile in the tiling
hierarchy (see figure 3).
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Fig. 3. Labelling of elements in linear octree

Molecular tiles in the tiling hierarchy may be
addressed by giving their size and the address of any
constituent atomic tile. The tesseral addressing requires an
ordering on the atomic tiles in Morton order. The mapping
between tesseral addresses and Cartesian co-ordinates of
the same objects is very simple by bitwise interlace.
Example:

454=100 101, = (3,0, 1) = (11,, 00,, 01,)

1

- 0 x=11,=3
2

45 (1) y=00,=0

<1) 2=01,=1

The practical result of tesseral addressing is that
tesseral operations directly on Cartesian co-ordinates or
Cartesian operations directly on tesseral co-ordinates can
be performed, with very simple bitwise operations.
Tesseral addressing, besides, may be used for labelling
linear octree nodes.

The importance of tesseral arithmetic consists in the
possibility of spatial operations (translation, scaling,
rotation) mapping into arithmetic operations. For example,
addition produces a translation of the tesseral image and
muitiplication result into scaling and rotation. The tesseral
arithmetic is differ from linear arithmetic.

The definitions of tesseral arithmetic operations for
2-D image [2] we can apply to 3-D space. Addition of two
tesseral numbers T, and T, results into a translation of the
first number T, by an amount equal to the vector from 0 to
the second number T, (the vector 0T,). Subtraction of
tesseral numbers T, and T, is a translation of the first
number T, by an amount equal to the vector from the
second number T, to the number 0 (the vector T,0). The
multiplication and division of tesseral
simultancously realise scaling and rotation of tesseral
object. The multiplication and division are very
complicated and we must apply it in tesseral hypercube.

numbers

The tesseral hypercube corresponds to 3-D Cartesian co-
ordinates system for negative octants.

For performing tesseral addition and subtraction of
any elementary digits we can use the tesseral addition and
subtraction table. The multi-digit addition is performed by
addition table lookup and by carry as well as in ordinary
arithmetic. The subtraction of tesseral number is
complicated and performed by the method used for P-Adic
fields [3].

Table 1. Octree tesseral digit addition

subtraction

06| 07

1,71 0,6

04| 0,5

1,5] 0,4

02]03

1,3] 0,2

0,01 0,1

LI} 00

Note: The row index of table octree subtraction is the T,
digit and the column index the Ty digit. The required
digit x of result T and associated carry ¢y which
have to be added to the remaining digits of T, digit is
in Table 2.

Suppose that the T, and T, are know tesseral
numbers and T, is unknown result. We will find tesseral
addition and multiplication of two tesseral numbers T, and
T in the form T, + T, =T and T, * T, = T, and the
tesseral subtraction Ty, - T, in the form T, + T, = T, and
tesseral division Ty/T, in the form T, * T, = T,. We will
find the digits of Ty result from right to left, starting with
the least significant digit of the T,. The application of P-
Adic method for tesseral numbers we show at the
subtraction of tesseral numbers Ty - T, = T,. We will find
the results in the form

T+ T =T ¢))
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Suppose that the last digit of T, is 2 and the last digit
of Ty, is 0. We require the last digit of T, to be such one
that when we add it to 2 we get the result 0. A glance at
the addition table (Tab. 1) shows that we must make the
last digit of Ty equal to 2 in order for this to be true. The
last digits of T,, T and T, then will be canceled, and we
can continue and find the penultimate digit of T,' from the
equation

T/ +T +2 =Ty 3)

or (T'+2) +T' =T @

or, if T, + 2 is written as T," then
T+ T = Ty )

It can be seen that equation (5) is of the same form as
equation (2), and we can proceed to solve it in the same
way. The process ceases when we obtain an equation

Ta'"+Tx|" - Tb"', (6)
which is identical with some equation previously
found T+ T =Ty )

When sequence of digits found for T, between
equations (7) and (6) will repeat indefinitely, the value of
ali digits of T, has been found. To automate the
subtraction process we apply subtraction table. We explain
the P-Adic method on subtraction of tesseral numbers 642
- 6530. The result we find in form 642 + T, = 6530. From
the subtraction table lookup we can find that the least
significant digit (2 - 0) is (2, 2). The least significant
digit of T, = ... 2 and the carry is 2. We obtain the
equation in form (64 + 2) + T, = 653. The processes
proceed in the same way

66+T, =653 6-3 :: @,5)
Te=..
6 +H+T" =65 2-5 n: @7
42 +T, =65 T,=..752
G+ +T™ = 6 6-6 o (00)
6 +T" = 6 Ty=..0752
0+T™ = 0 0-0 = (0,0
0+T™ = 0 T,= ..00752.

The forms of equations now repeat identicaly and the
result is 752. We can also extend the P-Adic method to
tesseral division.

4. Modelling of real objects

To represent the experiment of 3-D images by 5-7
degree octree the program in language C™ has been
suggested. This program generates basic objects (prism,
spheroid, cylinder, cone) and provides their geometric
transformations (Fig. 4). The program enables to combine
the basic objects by set operations (union, intersection,
difference and negation). Each object is specified by the
parameters (e.g. length d,, radius r, high v, etc.) which
have been used for its generation. The angle o determines

rotation of the object round the axis x, the angle B round
the axis y and y round the axis z.

Hh
Bit
[TH
111 JH--”
a, Cone; dimensions b, Cylinder: dimensions
d.= 330, d,= 400, r =330,
d.= 444, v =400,
rotations o=0, =20, y=0.  rotations a=0, p=20, y=0.

¢, Spheroid: dimensions
d, = 300, dy, = 150,
d. = 80,
rotations o=0, =25, yv=0.

d, Cone: dimensions
r =320,
v = 400,

rotations a=10, =25, y=0.

Fig. 4. Basic objects for 3-D images generating by octree of degree 6
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Fig. 5. 3-D model of T-55 tank and T-815 automobile by octree of 5
degree

At the figure 5 we can see the 3-D real objects
models which are represented by degree 5 octree combined
from basic objects by set operations. The model of T-55
tank is created by the union of 3 basic objects and the
model of T-815 automobile by 10 basic objects. For
approaching of the model to real objects we can use the

octree of high degree (see figure 6) but it is demanding

for computer memory and time.
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Fig. 6. 3-D model of F-15E aeroplane by octree of 7 degree

5. Conclusion

In this paper we have focused on the new technique
of generating of 3-D images by linear octree. For
improving of the image processing we use the tesseral
addressing and tesseral arithmetic. Image processing by
octree includes recursion and composition processes [5,
11] which are demanding for computer time and memory.
Demands for the processing are increasing proportionally
with the degree of used octree (see equation (1)). To
simplify these processes we must look for new methods
and for specialised architecture in hardware [7].
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