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K
Abstract )

A method for identification of discrete nonlinear
systems in terms of the Volterra-Wiener series is
presented. It is shown that use of a special. composite-
Sfrequency input signal as approximation to Gaussian
noise provides a compultational efficiency of this
method, especially for high order kernels. Orthogonal
Junctionals and consistent estimations for Wiener
kernels in the frequency domains are derived for this
class of noise input. A basis of the proposed
computational procedure for practical identification
is the fast Fourier transform (FFT) algorithm which is
used both for a generating of system stimuluses and
Jor an analysis of system reactions.
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1. Introduction

Continued interest has been shown in the use
functional series in the modelling, identification and
control of nonlinear systems {1-6] since the initial work by
Wiener [9]. He considered the class of causal systems that

produce an output with finite mean-square value when -

their input is a Gaussian white noise. The output y(?) of an
unknown nonlinear "black-box" system can be
approximated by a series of functionals G,,[h,,,x()] of the
input x(f) as

y(O) =Y G,k x(1)] (1)

where #,, is the Wiener kernel of the order m.

A main difficulty encountered when one wants to
apply the Wiener approach to identification problems
involves the measurement of the kernels which is
-computationally demanding. Several methods have been
presented to find the Wiener kernels of nonlinear systems
from given input and output pairs. Lee and Shetzen [7]
showed that the kernels can be estimated by input-output
crosscorrelation. French and Butz [8] used the fast Fourier
and Walsh transform algorithms for calculation the

Wiener kernels. However, there are some difficulties
_involved in these methods:

¢ A white Gaussian process is unrealizable.

¢ Formula for kernels, m=2, involves Dirac delta
functions, when two or more kernel's arguments are
equal.

o The required computation increases very rapidly with
the order of the Wiener kernel being calculated.

This paper will resolve these difficulties by
investigating discrete systems with special type of noise
inputs generated using the FFT algorithm. We will
construct the G-functionals for such inputs, and the
formula for the Wiener kernels and the efficient
identification algorithm in the frequency domain will be
presented.

2. Forcing functions for nonlinear
systems testing

It is necessary that the system stimulus must, on
the one hand, be like a random noise to get maximum
information about unknown system and, on the other
hand, to simplify the G-functionals and the procedure of
identification on the whole. Taking into consideration
these circumstances, let us consider as a test input the
following periodic noise approximation

Ny
=3 X(k)expf—zNﬂ @

k=-N,

Here X(k)=A(k)p(k) are complex Fourier coefficients,
where the amplitudes A(k) determine the power spectrum
of the input, and the phases ¢(k) are independent random
values with uniform distribution.

For zero mean real signal, the complex valued
Fourier coefficients have the following relationships:
X(0)=0, X(-k)=X*(k). According to the Central Limit
Theorem, the signal in the form of (2), being a sum of
independent random quantities, has a nearly Gaussian
distribution for sufficiently large N,. For every set ¢(k) of
the random phases, the formula (2) determines the
sequence x;(n) having N samples long which may be
formed by the inverse FFT of the coefficients

Xiky=A)pi(k).

‘3. G-functionals and Wiener kernels in
the frequency domain

According to the proposed method of generating
of the test signal, the random input process x{(n) is
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determinated by the set of input Fourier coefficients X(k),
k=0,...,N;, and the corresponding response y(n) can be
characterized by the set of output Fourier coefficients Y(k),
k=0,...,N,. Therefore, it is possible to rewrite input-output
relationship for nonlinear systems in the - frequency
domain as

M
Yy (k)=Y G,IH,, X (k)] ®
m=0

where H,(k),...k,) is the multidimensional discrete
Fourier transformation (DFT) of the Wiener kernel
Ap(ny,..., ).

By using a Gram-Schmidt orthogonalization
procedure, the G-functionals can be shown [10] to be

GulH,, X)) = Y Ho (ko kIS8 ok
Qp
<[Tx ) @
i=1

where the summation must extend over the m-D region Q,,
consisting of various combination (k,...,k,) from integers

{-No-i=L,1,..., N; } such that ky >k, >.. >k, ki#-k;, and &’

is a Kronecker delta. ,

The Wiener kernels in the frequency domain for
the model (3) can be determined by minimization the
mean square error between the DFT Y(k) of the system and
Yru(k) model responses

F = E{A"A’} - min

where AT = [81,...,5 | 18 the vector of the complex errors

having elements 5;=Y(k)-Y,(k), E{e} denotes the average
operation, and * represents the complex conjugate.

Minimizing this function, the optimal Wiener
kernels become

E{Y (ky+..+k )HX )}

HA (k)

In order to construct the estimate of kernel
Hy(k,....k) which would be suitable in practice let us
introduce the periodogram

H (k.. k)=

L, ke ky) =Y (ky+. k)

xexp{—/Zcp,(k,)]. ®)

Then as the estimate of kernel Hn(ky,..., k) we can use

L -
Z]Q___x(k,,...,k,,,)

k)= : ©)

LI TA)
i=1

" Halk,,..,

It can be shown [10] that this estimate is unbiased and
consistent with variance

Nm—l
Ka)t =

Var{ﬁm (k,,...
' L{Ch*e)' Stk )-..S(k,)

(S, Gy vk, ) = St (4. 4+k,)

where G = | |\K {k,|!/m!, Syk) denotes the power
spectrum of the system output signal y(n), and
Sf,‘,;"""' (k,+...+k,) is a component of the spectrum S,(k)

caused by a value of the kernel H,(k;,...,k,) at the point
k=ky+.. k.

4, Identification algorithm
If the random phases (k) are formed by random

sampling from set of numbers 2nr/R, r=0,...R-1, the
equation (5) for the periodogram may be rewritten as

L o (ksky) =Y (R4 4K,

2m{s, +.+s,_ymod R
xexp| —J = )
R
where s¢' is /-th set of random integers, b{c}mod R denotes
summation defined modulo R.

The calculation of the Wiener kernels for order
m22 may be performed more effectively if it is noted that
periodogram (7) may take limited number of values
Y(kyexp[-/2niIN,), k=0,...,N,, i=0,...,R-1. This allows us in
advance to form the array of possible products for every
DFT Yi(k). Thus the algonthm of identification consists of
the following steps:

1.Generation of the random integers s,’ms’N’ and forming
the complex Fourier coefficients X(k).

2.Calculation by using of the inverse FFT(IFFT) the /-th
block of the input signal

X1 (M)=FFT{Xk)}, n=0,...,N-1.

3.Stimulation of the system by the input x(n) and
registration of the response y; ().

4.Calculation by use the FFT the complex Fourier
. cocflicients

Y (K)=FFT{y(n)}, k=0,...,N,.

5.Definition of the array Zk,i) of all possible values of
the periodograms

Zi(k,iy=Y(k)exp(-j2ni/R), k=0,...,N,, i=0,...,R-1.
6.Forming the periodograms from the array Zk, )
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L (k) =Y () exp(~/ = 1), m=1

L, (kyek,) = Z)(ky +.. 4k, s} +.+5, }modR),

m=2,....M.

7.Calculation of the kernel estimates using eqn. (6).

This algorithm of the kernels estimation bases
also on idea of scanning the definition regions Q,,
m=1,..M, so that the partial sums k+.+k, and

{S:’z. +‘...+s,'c_ }mod R obtained for m-order kernel estimate

could be used for calculation the periodogram of the order
(m+1).

Since the number C, combination (k,....km)
containing in the kernel definition region (,, increases
rapidly with order m of the kernel, and the number of
multiplications, demanding for calculation of the array

Z(k,i) of all possible values of the periodograms, does not -

depend on m, the proposed algorithm, as compared with
methods [7,8], allows one to decrease the number of
multiplications to a marked degree. Actually, the most

effective  method [8] demands  approximately
L(C;+2Cy+..+mC,) complex multiplication, just as the
proposed  method  requires’ only  LR(N,+1)2

multiplications. For a comparison, in Table we give a
reduction factor of multiplications for N.=N,, R=8 and
various values m of the kernel order. Thus the
computational efficiency rapidly increases with the kernel
order.

Kernel | The number Ny of output frequencies
order m
16 32 64 128
1 1 1 1 1
6 12 24
3 26 110 447 1804

Table: Reduction factor of multiplications

The method developed in this paper has been tested by
applying two kinds of inputs to the known system: one is a
zero-mean Gaussian input, and another is the composite-
frequency input signal in the form (2). The kernels
calculated by Wiener method are compared to those
obtained by the method developed in this paper. Both
methods give approximately identical estimates of the
kernels in the frequency domain. However, comparison
these methods with respect to computation time on IBM
PC completely confirms the theoretical calculation
mentioned above.

5. Conclusion

A algorithm for identification of discrete
nonlinear systems in terms of the orthogonal series was

presented. The process generated by inverse FFT
algorithm was used as a test signal. For this input the G-
functionals and Wiener kernels were defined in the
frequency domain. The proposed algorithm offers a
significant = reduction in computational complexity
compared with the known methods since the number of
multiplications does not depend on the kernel order.
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