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Abstract

In the presented submission, various moment met-
hods for computing the current distribution and the
input impedance of wire antennas are rewieved and
compared. The use of various basis and weighting
JSunctions is discussed. At each method, computational
requirements and accuracy are investigated.
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1. Introduction

All the important technical parameters of anten-
nas such as gain, input impedance or directivity patiern
can be casily computed if the current distribution on the
antcnna surface is known. Unfortunately, computation of
current distribution makes troubles becausc integral equa-
tions have to be solved.

There are two basic approaches to the solution of
integral cquations - iterative and moment ones. Iterative
methods come from a rough approximation of the current
distribution (e.g. sine wave on the dipole antenna) that is
iteratively precisioned. On the other hand, moment met-
hods transform integral equations to a set of simultaneous
linear equations those are solved by matrix operations.
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Fig.1 Wire antenna

Presented paper is focused in the moment analysis
of wire antennas. In all the cases, antennas are supposed to

be circular cylinders of radius a and length 2A. The anten-
na axis is situated to the axis z (fig.1) of the cylindrical co-
ordinate system (r, g z). Cylinders occur in the vacuum
(u= po, €= &, o= 0) and do not exhibit any losses.

Fig.2 Excitating electrical field between antenna terminals

In the middle of the cylinder (z=0), there is a

short gap. In the gap, a hypothetical harmonic generator is

assumed such as the excilating electrical field can be azi-
muthally symmetric. The voltage across thc gap

Ve-| Ed (L1)

gap
is supposed to be 1'V. In (1.1), I, is the z-component of the
excitating electrical field intensity on the interpolated an-
tenna surface (fig.2). Outside the gap, E, is zero because of
the perfect conductivity of the cylinder.

Section 2 of the paper describes the nature of mo-
ment methods and various basis and weighting functions
are introduced. Section 3 deals with the wire antennas
(their diameter is negligible in comparison with the wave-
length).

All the theoretical conclusions arc illustrated by
results of computer simulations those have been performed
in matlab 4.2 and MathCAD Plus 5.0.

2. Methods of moments

Assume a general integral equation

b

[ r(z.8)d¢ = g(2)

a

(2.1)

where /' is an unknown function, <a,b> is the integration

interval and g is a known function describing sources. The

moment method solution of (2.1) consists in 3 steps:

1. The unknown function / is approximated by a lincar
combination of known basis functions f, and unknown
coefficients ¢,

(2.2)

2. The approximation of the unknown function / is put
back to the solved equation (2.1). After that, the
summation and integration are swapped. This yields

N b
4 e[ 1,0z =)+ RE). (23)
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Here, R(z) is the residuum which expresses the fact that

the approximation 7 does not fulfil the relation (2.1)
exactly. Equation (2.3) is one equation for N unknown
coefficients ¢, : ;

3. The approximation 7 most accurately fulfils (2.1) if
the residuum R is minimal. Hence, the residuum is
minimized by the method of weighted residua: product
of the weighting function w and the residuum R
integrated over the region of interest <a,b> have to be
zero [1]. If ¥ weighting functions are used then the set
of N simultaneous linear equations for N unknown
cocfTicients c, appear

b
[wal2) R(z)dz =0 m=0L..N (24a)
N b ’ b b
c.fw, @ 1.z, dedz = [w,(Dgl)dz.  (2.4b)
n=1 a a a

Both basis and weighting functions have (o be linearly
independent on the interval <a,b>.

2.1 Basis functions

Basis functions can be global or local ones. Glo-
bal basis functions are defined on all the region of interest
<a,b>. E.g., system of functions

1,.(2) = cos{(mnz/h) (25)

is on <a,b> linearly independent and coefficients c, in the
approximation

N N
f@~f@2)= ch,,f” = z_;,cn cos(nnz/h) (2.6)

have got then meaning of Fourier coefficients.
Approximation based on the global basis func-
tions is called the single-basis approximation.

basis
functions

fi

Fig.3 Multi-basis approximations
a) piece-wise constant
b) piece-wise linear

Local basis functions are defined on all the region
too but each of them is non-zero only on a sub-region of
the interval of interest <a,b> as can be seen in fig.3. If
basis functions are normed then coefficients ¢, have got

the meaning of nodal values of the computed function f

- (fig. 3). Approximation based on the local basis functions

is called the multi-basis approximation.

2.2, Weighting functions

Point matching and Galerkin’s methods are the
most common ways of residuum minimization.

Point matching (or collocation) uses Dirac pulses
as weighting functions

w,(z)=6(z-2,).

Point matching method exhibits very low compu-
tational requirements because one integration is climinated
in (2.4) thanks to the filtering property of &pulses

S 1 Bt =)

On the other hand, residuum minimization is related only
to the matching points z,,.

In Galerkin’s method, weighting functions are
identical with the basis ones

w.(2) = 1.(2).

Galerkin’s method exhibits higher computational
requirements in comparison with point matching because
one of integrations is not eliminated in this case. On the
other hand, the residuum minimization is performed with
all the points ze<a,b>.

(27)

(28)

(2.9)

3. Wire antennas

Assume the cylindrical antenna of fig.1. Then, the
radiated electromagnetic field can be expressed in terms of
vectorial and scalar potentials A and ¢ respectively. Poten-
tials have to fulfil inhomogennous wave equations [4]

o"zA,(z) " _
S +k2A,(2)=-p, J,(2) (3.1a)
7 "’(Z)+k2¢(z)=—p(z) (3.1b)

oz} &
Here, J, is the z-component of the current density [A.m?)
impressed to the antenna by the source, p is the volume
charge density [C.m™] on the antenna, 4, is the z-compo-
nent of the vectorial potential and ¢ is the scalar potential,
k=272 is the wavenumber and A is the wavelength.

The current flowing on the antenna causes charge
accumulation at the ends of the antenna cylinder. This fact
can be described by the equation of continuity [4]

8J,(2)

———+ja1p(z)=0'.

57 (3.2a)
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If radius of the antenna cylinder is much smaller
than the wavelength a<<A then the current and charge can
be assumed to be concentrated in the axis of the cylinder
[1] and solving (3.1) yields [4]

u o~ HR(24)

4,6)= ;;th,(é)-——-—R(z, 4 (3.20)
- jkR(2.£)

w(z) (3.2¢)

€
47:5"“ (5) R(z,ﬁ) de.

Here, 1,(£) is the current [A] flowing in the axis of wire,
o(&) denotes the length charge density [C.m™'] on the axis
of wire, R(z,¢) is the distance between the location £ of el-
ectromagnetic field sources 7,(& and o(&) and the location
z potentials A(z) and ¢(2).
On the base of A(z) and ¢(z), electrical intensity
of the field radiated by the antenna can be computed [4]
E(z) = ~jw/1,(z)—ig(zi). (3.2d)

Electrical intensity has to fulfil the boundary con-
dition on the antenna surface S

El+E! =0 onS; (3.2¢)

[, denotes electrical intensity of the incident wave.
If the current distribution on the antenna is to be
computed then the set of equations (3.2) has to be solved.
Fulfilling the boundary condition (3.2¢) requires
computation of electrical intensity (and consequently- po-
tentials ) on the surface of the wire. That is why the distan-
ce R is described by the equation

R(z,&) = 2+(z—§)2.

In the following paragraphs, the use of various
basis and weighting functions for the solution of (3.2) by
moment methods is discussed.

(3.3)

3.1 Piece-wise constant approximation,
point matching

Segmentation of the antenna is depicted in fig.4.
Lower bounds of segments are signed by ,,-“, upper ones
by ,,+*“. Lower bound of the first segment and upper bound
of the last scgment are shifted from the ends of the
antenna to fulfil condition /(-h)=I(h)=0. Segments’
lengths are 4=2a.

Putting piece-wise constant approximation to the
integral equations (3.2b,c) yields

. ~h+(n+0.5)A e—ij(x g)
4.6~ Zl )d¢

(3.4b)
Tl _pa(n-05)a R(Z

k(2058 - HR(z.0)
Ko

-h+(3-0.5) (Z ¢

o2) ~

N
Z (3.4c)

47e £

Here, I, and g, are nodal values of current and charge den-
sity distributions.
A4

i(2)
/
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Fig.4 Piece-wise constant approximation

Since first derivative of the piece-wise approxima-
tion is zero on the constant sections and does not exist on
their borders. (3.2a) and (3.2d) are rcwritien in terms of
finite differences. If the fact that i, = I,(-h +nA) is conside-
red then the continuity equation can be expressed as (3.5a)
1(=h+(n+1)A) = 1,(~h +na)

A

+jwo(-h+(n+05)A) =0

and the relation for computing elcclrlcal intensity is then
of the form
E;(-h+nA)= - jart,(-h+nA) -

o[- +(n+05)A)- g(-h +(n-05)A)

A

(3.5d)

Relations (3.5a) and (3.5d) show that Dirac pulses for
point matching have to be placed to the middle of seg-
ments for the vectorial potential
(3.5b)

A ( h+mA) H ZN‘/ _M(T-S) e i dé

’ "—h+(n»0.5)A R( ~h+mA 5)

and to borders of segments for the scalar potential

P(-h+{m+05) A)~ (3.5¢)

~hH{n+1) A e-jm(_m(mo.s)A,:)

1 N
ans & Z R(-h+(m+05)A, g)dé

~h+nA

In (3.5¢), 0,4+ = o (-h+(n+0.5)4).
Now, (3.5) can be rewritten more compactly

o, z——l[u} (3.62)
n jo A
PR o~ MR (m.)
A m—— ) I d 3.6
L= AI (m;) £ (3.60)
) )
p(m*) = WZ I ( ) (3.6¢)
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o)) (54

~ Ei(m) » - jad, (m) -

In (3.6d), the boundary condition (3.2¢) is included.

Now, let’s have a look at the continuity theorem
(3.6a); it expresses the fact that segments of the antenna
can be replaced by elementary electrical dipoles (fig.5).
Taking this idea in mind, submission of nth segment to the
scalar potential can be computed on the base of (3.6¢) as

] . (37)

Putting (3.7) and (3.6b) to (3.6d) and multiplying both
sides of eqn. by 4 yields

o) =— 1,

Jjoe| " 4nrR

E:A =71 (3.8)
where
o~ PR(m8)
+ 3.9
jawAjMRm e (3.9)
1 — e JKR(m+.£) e JkR(m+.£) ] 1
+ ——

A!. 4”R(’"+, )df—[!_ 47rR(m+,§) de A

- JkR(m- )

1 e g H(m-)
- joe _A'[ 4er(m‘,§) df—AJ:_ 47rR(m‘ , )

de

denotes submission of current and charge on nth segment
to the voltage induced on the mth segment.

Since electrical intensity is zero on all the seg-
ments except of the source gap, elements of voltage vector
are zero except of the gap-segment corresponding element
which equals 1. Then, (3.8) provides the current distribu-
tion I. Ratio of input voltage and input current give then
the input impedance of analyzed antenna.

1 1 1*

2 2 2*

Fig.5 Antenna as a set of elementary electrical dipoles

The described algorithm can be very easily prog-
rammed. First, all the necessary integrals

v =, [exo(- jkR) 4z R]ag
are computed. In matlab Syntax:

for m = 1:(N+2)

z = (m-1)*del;
psi{m} = quad8('g
end

% del = segment length
',~del/2,+del/2,1e-5,0,z,a,k);

In the quad8 function (numerical integration based on
adaptive recursive Newton Cotes 8 panel rule), g is the in-

tegrated function, -del/2 and tdel/2 are limits of in-
tegration, 1e-5 is required maximal error of integration
and z. a, k are parameters. The integrated function 9 is
defined as:

function out=g( ksi, z, a, k)
R = sqrt{ a~2 + (z-ksi)"2); % ksi € (-A/2; +4/2)
out = exp(-j*k*R)/{4*pi*R); % Green’s function

Now, the impedance matrix can be built up, if length of all
segments is the same then distances (m',n"), (m",n’) equal.

for m = 1:N $ Impedance matrix
for n = m:N
dist = abs{m-n); & source-destination distance
hlp = 2*psi{l+dist) - psi{l+abs(dist-1}} -
psi{ltabs{dist+1)};
Z{m,n}) = j*omega*mi*del*psi{l+dist) +
hlp/ {j*omega*epsilon*del); % egn. 3.9
Z2(n,m) = Z{m,n}); % matrix is symmetrical
end
end

In the above list, i and epsilon are permeability
Mo and permittivity: g, omega js the circular frequency @
and 7 denotes imaginary unit.

1.8
141 5
g

" [ module
0.6} [mA]
0.2 :

0 10 20 30 40 50 —= z[n]
3

—

.1 phase
) frad]
-3
L (1] 20 30 40 50 —> z(n]

Fig.6 Current distribution on the symetrical dipole. Piece-wise
constant approximation, point matching. Length of dipole 2),
diameter 0.001588 A, number of segments 64.

At the end, impedance matrix is inverted and its
respective column gives the nodal values of the searched
current distribution (fig.5).

' " An'example of the analysis results is depicted on
fig.6; module and phase of the current.distribution of the
dipole » = A and a = 0.0015884 is plotted there.

3.2 Piece-wise linear approximation,
point matching
The piece-wise linear approximation that will be

used for the antenna analysis is depicted in fig.7. It is
formed by shape functions N,™; function N,™ is non-zero
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on mth segment and reaches value 1 in the nod n. Hence,
the current approximation can be expressed as

It [N N L[N NO @)+ (3.10)

where I; are nodal values of current distribution. Shape |

functions can be expressed as (3.11)

W(,)-2"% @ i @(,) = z
M) I NP BT M= 2
elc.

% (1)

2@ 2 @
4|
2h

Fig.7 Piece-wise linear approximation

% (a) Tz

All the shape functions related to the same nod
form the basis function, e.g.

N =N"+ND.

(3.12)

Symbols in (3.10-12) are explained in fig.7. Using basis
functions, (3.10) can be redefined as

N
T@=Y NI, . (3.13)
n=]

Putting (3.13) to the continuity theorem (3.2a) yields

-1 1n+| _In]
T zja) A

which is the same relation that has been reached when

picce-wise constant approximation has been used (3.6a).

Hence, the submission of charges to the electrical field

(second term of eqn. 3.9) has to be computed by the same

way as it has been described in the previous paragraph.
Putting (3.13) to (3.2b) gives

(3.14)

—JH?(x s‘)

= d
A_,(z) Zl Ve Ty R( é) .

Submission of the current J, to the vectorial potential at
z=mA can be then expressed as

A(mA)———-[J' S €

(3.15)

~ JkR(mA &)

(mA 5) dé+

(3.16)

dé} I,.

-¢ o AR(mb )

Znyy zn+l
"{ I A R(mA¢)

Replacing first term of (3.9) by (3.16) yields the final al-
gorithm

gg e
Z”’"”“”‘A,{I 4xR(mA 5" s+
| ‘m: "f e - /R(mA %) .

e g O

1 i e-JH‘("“"f) e-Jm(M'hﬂ ] 1
+jw£ _A‘[ 47:R(m*,§) df*,;!_ 47tR(m",§) dé_ A

L[, el :) g
~1‘w€ I47rR I4;:12(»: X

The kernel of the program written by the matlab syntax
follows; first, all the necessary integrals

s = |, [exp(~skR) /47 R]d¢

v = f N exp( JKR) SPTKR) e “‘ Nl °XP(“fkR)d§

4z R 47 R
are computed:

for m =1:(N-1)
z = (m-1)*del; )
hlpl = quad8{'gl', -del,0,1le-5,0,z,-del,0,a,k);
hlp2 = quad8('g2',0,+del,le-5,0,2,0,+del,a,k);
psi(m) = hlpl + hlp2;
ksi{m) = quad8{'g',-del/2,+del/2,1e-5,0,2z,a,k};:

. end;

Functions 91, 92 and 9 are given by the following defini-

. tions:

function out = g1( ksi, z, ksibn, ksiUp, a, k)

R = sqrt( a~2 + (z-ksi)"2); 4% ksie(ksiDn,ksiUp)

out = ((ksi-ksiDn)/(ksiUp-ksiDn))*
exp(~F*k*R}/(4*pi*R);

function out = g2{ ksi, z,'ksiDn, ksiUp, a, k)
R = sqrt({ a"2 + (z-ksi)"2); % ksie(ksiDn, ksiUp)
out = ((ksiUp-ksi)/(ksiUp-ksiDn})*

exp(-j*k*R)/ (4*pi*R);

function out=g( ksi, z, a, k)

R = sgrt{ a”2 + {z-ksi)"2):;

out = exp({-j*k*R}/{4*pi*R);

At this moment, impedance matrix can be built up.

for m = 1l:(N-1)

for n = m:(N-1)

dist = abs(m-n);

hlpl = j*omega*mi*del*psi(l+dist);

hlp2 = (2*ksi(l+dist) - ksi{l+abs(dist-1)) -

ksi(l+abs(dist+1)))}/(j*omega*epsilon*del);

Z{m,n] = hlpl + hlp2:
Z{n,m) =Z(m,n};
end
. end

Finally, inversion of impedance matrix yields the searched
current distribution.
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3.3 Piece-wise linear approximation,
Galerkin’s method

In the previous paragraph, putting piece-wise li-

near approximation to the continuity theorem has led us to -

the situation that has been identical with the piece-wise

constant approximation. Now, let’s perform the
substitution on the symbolic level only
5N (z)
a(z)———-—Z I,. (3.18)
n-l

Putting (3.18) to (3.2c) gives us

1 & N, o Hlrd)
o) =-—1,—2 =] G )dg.(3.19)

JOE 2 47 Rz,

Substituting (3.18), (3.19) and (3.15) to (3.2d)
. , oplz
E}(z)=-jwA(z)- z(z)

with considering the boundary condition (3.2e) yields
- jkR(2.£)

R(2) myZl [. N Z%—E(z—)d§+ (3.20)

~JkR(2.£)

N
st G5y Oy e dé-E(z).
joe 8z 5 oz ;, 47rR(z, )
Now, residuum (3.20) can be minimized by the use of Ga-
lerkin’s method

[N (2)R(z)dz =3, +3, +3, =0,

2h

(3.21)

where

(s |
ja)#;l] A (z)[jN ( )Wﬁ]dz(lna)

1 & ON, ¢ e s
3= j_a:Ez_:‘I"I{N"'(z)}?[ Pz i[- 47rR(z, )dfjl]dz

(3.22¢)

Rather problematic derivations in (3.22b) can be overcome
by the use of per partes integration

1 & _ éN, e Ml *
32-‘-;”;"2::‘1"[[1\’,.(2) » IMR( f)dé{l -(3.23)

dg]dz}

Assuming infinitesimally close gap in the middle of dipole
that contains the electrical field source

e - jkR(3,8)

N, N,
—I[ Az Iz 5‘;47zR(z, )

El=1 2z=0
=0 z#0
gives
3, =1 m=(N/2)-1

=0 m#(N/2)-1" (3.24)

Resultant relation for the computation of the impedance
matrix (the fact that SN™ /5z=+1/A has been conside-
red) has got following notation

JawA{ | N(’")[ JND s e’

Zp-t

i) €20

47tR z 4‘) df]dz

e+ I

( f) Zpet “M(”:)
(m+1) e " () €~ _agla
+j1v [jzv ”R(z,f)d¢+ j’N D d;] z}+
s [x,. o~ M58 I HR(2.8)

-
R e
o HR(2) oIz

st Znet 1
! [fm(_)df f Wz(;,z)“”‘fnrzm (3.25)

2w

The algorithm (3.25) can be expressed in matlab
syntax. In the first step, integrals (3.25) are computed

for m=1:(N-1}
hlpl = quad8('vectl',0,del,le-5,0,0, (m-1)*del,
m*del, (m+l)*del,a,k),
hlp2 = quad8('vct2',del,2*del,1e—5,0,2*del,
(m-1)*delta,m*del, (m+1)*delta,a,k);
psi(m) = hlpl + hlp2; % lst+2nd integ. of (3.25)
hlpl = quad8{'scl',0,del,le-5,0, (m-1)*del,m*del,
(m+1)*del,a,k);
hlp2 = quad8('scl',del,2*del, le-5,0, {m-1)*del,
’ m*del, {m+1)*del,a,k};
ksi(m) = hlpl-hlp2; % 3rd-4th integ. of (3.25)
end;

Fuctions appearing in the above program are defined as:

function out=vetl(z,zDn,ksiDn, ksiMd, ksiUp, a, k)

del = ksiUp - ksiDn:;

hl = quad8{‘'gl’',ksiDn,ksiMd, le~5,0,z,ksiDn, ksiMd,
a,k);

h2 = quadB8('g2',ksiMd,ksiUp,le-5,0,z,ksiMd, ksiUp,
a,k};

out = (hl + h2)*(z-zDn)/del;

function out=wet2(z,zUp, ksiDn,ksiMd,ksiUp,a,k}

del = ksiUp - ksiDn;

hl = quad8{'gl',ksiDn, ksiMd, 1e-5,0,2,ksiDn,ksiMd,
a, ki:

h2 = guad8('g2',ksiMd, ksiUp,le-5,0,2z,ksiMd, ksiUp,
a, k);

out = (hl + h2)*(zUpfz)/del;

function out=scl(z,ksiDn,ksiMd, ksiUp,a,k)
hl = quadB{‘'g’,ksibn,ksiMd,le-5,0,z,a,k});
h2 = quad8{'g’,ksiMd, ksiUp,le~-5,0,z,a,k);
out = hl - h2;

- Functions 91, 92 and 9 have the same body as in the pre-

vious paragraph.
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Now, building-up the impedance matrix is simple:

for m = 1:(N-1)
for n = m: {N-1)
dist = abs{m-n);
Z{m,n) = j*omega*mi*del*psi(l+dist) +
ksi(l+dist)/(j*omega*epsilon*del};
end
end
Since the used version of matlab has exhibited
problems in evaluating double integrals, numerical results

of this algorithm have been computed by MathCAD Plus.

3.4 Global cosine approxnmatlon, point
matching

For the global approximation, let’s re-arrange the
set of initial equations (3.2). The electrical intensity that is
expressed by (3.2d)

E}(z)=-joA,(2)- %”—(zz—)

will be evaluated by substituting A, from (3.2b)

( ) j ( )e—jl'R(z‘f)
A, —d
z 2% 1 5 R(Z, 5) é
and @ from Lorentz gauge condition [4]
1 24,(z2)
= (3.26)
joue Oz
which yields
1 0—»2 "J"R(" 5)
E(z)=— &) —r—r 3.27
:(2) jwe a7 j (5) 47rR(z ) s+ ( )

YV Ky
+ [ —
£©MWﬂ4

Since Lorentz gauge condition provides relation
of current and charge distributions by the equation of
continuity, (3.27) completed by boundary conditions is
equivalent to (3.2).

For wire antennas, order of intcgration and
derivation in (3.27) can be swapped [4]

=L i) Ty T
Ez)=—"]1 k dé.
G0 N 5 G reg) Y anrlg) |
Computing content of the bracket in (3.28) yields
- AR(2.2)
E,(2)=[ 1(&](1+/kR)(2R" -3a*)+k*R*a*
5

e
47 R(z, )d‘f
Relation (3.29) is initial equation for the analysis.

Since the current distribution of a symmetrical di-
pole is an even function, the distribution can be
approximated by cosine terms of Fourier series [2],
pp.122-129

1(z) = 21 cos[(zn 1);;]. (3.30)

In addition, (3.30) automatically fulfils I(#4)=0.
Substituting (3.30) to (3.29) and collocation in
arbitrary N-1 points on the antenna surface gives

;lnim{(h - 1)—'2'—;51(“ ﬂdf(sz))(ZRz(z,, g- 3a’) N

V(e at] o e =
HHed) | )
m=1,2..N-1. (331a)

Collocation in the source point z=0 (all the cosines equal
one) leads to

N
X1, =1
n=1

(input voltage has been again considered 1V).
Unfortunately, this approach does not enable direct
computation of input impedance. Hence, only the current
distribution has been investigated (fig.8).

Computing the matrix equation (3.31) gives Fou-
rier coefficients of the current distribution /,. Program in
the matlab syntax follows:

(3.31b)

3

2 -

1 s

module

ol _Ima] . , ,

0 0.4 0.8 1.2 16 —=» 2[(mj}
3
1
-4 I
3 N A A —

0 0.4 08 1.2 1.6 —= 2[mj

Fig.8 Current distribution on the symetrical dipole. Cosine series
approximation, point matching. Length of dipole 2\, diameter
0.001588 A, number of segments 6

for m=1:N
z = del*((2*m+1)/2):;
for n=1:N
if m==N C(m,n)=1 else
C(m,n)=quad8{'cc',~h,+h,1e-5,0,2z,n,h,a,k);
end;
end;
end;

function out=ecc{ ksi, z, n, h, a, k}

R = sqgrt{a”~2+(z-ksi)"2};

hipl = [{1+j*k*R)* (2¥R"2~-3*a"2)+k"2*R"2%a~2)*
exp{-j*k*R}/ (4*pi*R"5};

hlp2 = cos{(2*n-1)*pi*ksi/(2*h)};

out = hlpl * hlp2;

Inversion of C yields Fourier coefficients of the current

distribution at fig.8.
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5. Conclusions

Presented paper has introduced several moment
methods that can be used for numerical analysis of wire
antennas.

By each multi-base method, input impedanace of
the antenna & = 0.25 A and a = 0.001588 A has been com-
puted (tab.1). It can be seen that no dramatical differences
have appeared among the methods (tab.1).

If presented methods are compared from the point
of view of computational requirements then number of nu-
merical integrations has to be investigated especially since
numerical integration consumes most of the computational
power (tab.2). This fact is illustarated by time that has
been required by specified computer for performing
respective algorithm.

It can be concluded, with respect to tab.l and
tab.2 that piece-wise constant approximations and point
matching give respectable results although their
computational requirements are very small.

Single-basia approximation has exhibited higher
computational requirements than multi-basis ones. In
addition, evaluation of the input impedance by this method
requires additional computations. Current distribution
computed by the single-basis approximation have been
approximatelly the same as those provided by multi-basis
approximations.
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Tab.1 Input impedance of symetrical dipole (2h=0.5), a=0.001588)) computed by discussed methods. Value taken from
King-Middleton is (83.6 + j41.3)Q.

approximation minimization N =28 N = 16 N = 32
constant point matching]82.3 + j38.5(84.6 + j40.6 {86.5 + j43.2
linear point matching |{80.4 + 335.3 184.0 + j39.3 |86.2 + j42.8
linear Galerkin 82.5 + 3J39.3 |86.2 + j43.7 |87.9 + j45.6
Tab.2 Comparison of computational requirements of discussed methods.

operations constant linear linear

point match. | point match. Galerkin

I()dx N+2 3(N-1) 0
ITI()dxdy 0 N-1
time [s] 7 18 392

" Time necessary for performing respective algorithm for 32 segments; AC486DX2, 66MHz, 32MB RAM.



