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4 Abstract

DC operating points of a linearized noninertial
network can be, according to the character of their
stability, classified into 3 categories: 1. stable, 2.
unstable, 3. conditionally stable (conditionally
unstable). In the paper it is shown that the process of
decision can be based on modified node voltage
Jormulation of network equations. The suggested
process consists of formulation of the system matrix,
matrix  inversion  and  simple  arithmetical
manipulations with . the elements of the resultant

matrix.
4
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1. Introduction

Consider a complicated resistive (noninertial) network
consisting of linear and nonlinear resistors and controlled
sources, and ideal operational amplifiers. All the operating
points of the network have already been found and we are
interested in their stability [1], [2].

The stability of each operating point will be investigated
separately.

The characieristics of nonlinear .network elements are
linearized at the operating point. The problem of operating
point stability is thus transformed into a problem of
stability of the corresponding linearized network model.

We are dealing with a noninertial network but we are aware
that parasitic (stray) capacitances are present between its
nodes and parasitic inductances arc in series with its
branches.

To start our investigation we first assume the existence of a
single stray capacitance C>0 between nodes i and j, as
shown in Fig.1. This capacitance, together with the input
resistance R;, of the network (which is under our

@FC*}@

Fig.1. Stray capacitance C between nodes i and j of the linearized
noninertial network

assumption noninertial), forms a parallel RC network with
a single pole
1
)
C.R;,
If R;, >0 then p<0 and the network is stable. Negative sign
of the input resistance measured between the nodes of the

p=-

. capacitance C, results in instability. -

When cutting any branch we can observe its input
conductance, G;,. This conductance, in combination with

a stray inductance L, creates a series RL network with
e ;

LG,
Again, if G;,> 0, the network is stable. Negative sign of
the input conductance indicates instability.

p=- 2

As it follows from the above considerations, the stability of
the operating point in question can be verified very easily.
If all input resistances measured between any pair of nodes
and all input conductances observed in all branches are
positive, the network is stable under any circumstances, i.e.
with arbitrary stray capacitances and inductances and any
combination thereof.

A more complicated situation arises when some of the
input immittances are negative. The network - is
conditionally stable (or conditionally unstable, as one
wishes). The stability depends on the location of the stray
elements in the network or on their total number (two or
more).

K R, R,

Fig.2a.The case of input resistance consisting of a positive
resistance R, and negative resistance R, in parallel with a
stray capacitance C

We shall illustrate this with a simple network shown in
Fig.2a. The network has a negative input resistance K in<0
between the nodes / and ;. It is unstable with any positive
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capacitance C. As seen, the network consists of a parallel

connection of a positive resistance R p>0 and a negative

resistance R, = ——!R n |<0 of the rest of the network. This
negative resistance may be a consequence of internal
feedback loops.
According to our previous assumption,

_ RpRy  —RyR| - 3

n

R,+R, R, -|R,|
denominator of the fraction being positive. Thus
R, >[R,| )

Ra

e

Fig.2b. The case of input resistance consisting of a positive
resistance R, and negative resistance R, with a stray
inductance L

Assume now that instead of the parallel C we connect a
series inductance L as in Fig.2b. The input conductance
seen by the inductance

1 1
Gin = R,+R, R,-|R,]

so that the network in Fig.2b is stable.

>0 5)

It is therefore obvious that a parallel combination of a
positive and a negative resistance is always only
conditionally stable. This is true even in the case when

Rp<|R,,|.

Rx

| © ) UR’

>

I
1

Fig.2c. The case of input resistance consisting of- a positive
resistance R, and negative resistance R, with both C and L

The network in Fig.2c contains simultaneously two stray
elements: a parallel C and a series L. Its characteristic
equation is

RLC+A| L~ CIR,)| -l g ©
RP RP

If
IRa|<R,
and
_RL;..-CIR"PO, i.e.if%>Rp|Rn| : ™

the network is stable, otherwise it is unstable.

2. Effective Numerical Calculation of
Input Resistances and
Conductances

Modified node voltage formulation is used to describe the
linearized network. The €quations are

[:2 DZI]XL‘H:[;] ®

ie. .

Mx=b ®
Here
U= [U U2, U ,,]T is vector of n node voltages (the
superscript T denotes transposition)

Iy =[]01,102, ,IOn]T is vector of m additional currents
(output currents of voltage sources and operational

amplifiers, controlling currents of current-controlled
sources)

Y is an nx admittance matrix of the regular part of
the network

D;andD, are matrices nxmn and nn, respectively. They

contain dimensionless elements +/, -1, A and B .
(amplification factors of voltage-controlled voltage sources
and current-controlled current sources)

V4 is an mxm impedance matrix containing internal
resistances of voltage sources and transfer resistances W of
current-controlled voltage sources

M is the (n+m)x(m+m) system matrix,

X is a vector of unknown quantities,

b is the right-hand side vector of independent
sources.

By inverting the matrix M we get
[Ryy Rz - R

Ryy Ry

R=M71=|(R,, R, .. R, (10)
Gn

Gmm i

(in (10) we ;how only elements that will be used in further
calculations).
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The input resistance belween the node i and the datum
(reference) node .

Rin(i) = Rij an
Input resistance between nodes i and is

Rin(

i,j)=Rii +R_[] _R'./_R

ji (12)

Input conductance measured in series with the resistor R
connected (inside the network) between the nodes i and j

1 Rins,j) |
Gin(r) = E[l TRk )
This conductance is -positive if Rin(i,j) <R, including '
R,-,,(,, j)<0.

Finally, input conductance measured in series with the |

branch carrying the current /;

Gin(1,,;) = Gii (14)

As a result, calculation of all immittances requires only one
matrix inversion plus simple algebraic manipulations with

some elements of the resultant matrix.

Example 1

4
4

. 4

Fig.3. A network with two voltage amplifiers analyzed in Example 1

The network in Fig.3 contains 4 resistors and 2 voltage
amplifiers (voltage-controlled voltage sources). If e.g
Ry =Ry =Ry =Ry =1, the input immittances depend on
amplification factors 4, and 4,.

2-4, 2
Rinft) = —— in(2) = (15)
2-A,\1+ 4 2-AA
Rm(l,4)=-—;£n——‘—),. in(23) =%, (16)
2(1-4 4-24, -4
Rm(3,4)="'(;e"—2)’ Rin(l,J)z-‘T?n“L, (17

2-4,(1+ 4y) _2-4,

Gin(r,) = en Gin(r,) = o (18)
2(1- 45) _2-A44,
Gin(ry) =— o+ Oinlre) == — (19
4- 4,

Ginlay) == 20
where all denominators are

den=4-A,(2+4,) @h

The results are graphically shown in the plane (AI,AZ),
see Fig.4.

A=4/(2+A)) A=2/(1+A))

-6 4 -2 0 2 4 6

Al
Fig.4. Boundaries of stability regions of the network in Fig.3

The hyperbola
den =0
2+ Al )
determines the boundary where the denominator changes
its sign. Other lines répresent the loci where the individual
numerators change the sign. The hatched area represents
conditional instability. The rest of the plane corresponds to
the combinations of amplification factors that secure stable
operation of the network.

ie. A2 =

b

Example 2

For the transistor flip-flop in Fig.5a consider the equivalent
lincarized scheme  in Fig.5b. For simplicity “assume
infinitely large input resistances of the transistors. The
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collector current is proportional to the base-emitter voltage,

e =8mUpe-
The admittance matrix of the network is

LU U |
Ry Ry ! Ry
Y= 0 -El— +gmy +gmy - gm, 22)
‘ 4
1 0 R
| R Ry Ry |

Rma(U1311)

l&—.— l
|
R3 Q [ U3 R4
) b.

Fig.5. Two-transistor emitter coupled flip-flop network.
a. original scheme, b. linearized equivalent network

The parameters (resistances in kiloohms, transconductances
in millisiemens) are:

Rl = 2, R3 = 10, R4 = l, gm =gmy = 20.
Assume first Ry =10. The admittance matrix will be

06 -20 -0.1
Y= 0 41 -20
-01 0 0.2

and the matrix of input resistances

. —-820 —400 -40410
R=Y'=——{-200 -11 -1200
3549 - ,

—410 -200 —2460

Most input resistances are negative due to a strong internal
positive feedback in the network:

Rin(l) =-0.23105, Rm(z) =-0.0031], Rm(3) =-0.69315,
Rin(1,2) ==0.65089, Rj,(33) =~0.301776.

Only the input resistance between nodes 1 and 3 is positive
Rinf1,3) = +10.5776.

With only a single stray capacitance the network is stable
only if the capacitance is connected to the nodes 1 and 3

(i.e. in parallel with R,). If the capacitance appears in any

other place, the network is unstable, A question arises
whether the network can be stabilized by a simultaneous
application of 2 or more capacitances with proper values.

Consider e.g. C) >0 connected to the nodes 1-0 and C, >0

between 1 and 3. The characteristic equation of the
network,

4 ~187
—3549+ 1Cy ~1877C, /l+41C1C212 _
100 5 ) (23)
=a0 +al/l+02/12 =0,

indicates that the network is unstable. The coefficients
ap =~3549/100 and a, = +41C,C, have different signs,

independent of the values of C; and C,.

Example 3

When R, —> oo the feedback loop is open and the situation

is changed considerably. The admittance and resistance
matrices are ,

05 -20 0
Y=|0 41 -20],
0 0 o0l
82 40 8000
R=Y“‘=% 0 1 200
0 0 4l0

Almost all input resistances are positive

Rin(l) =2, R,'n(g) =0.0244, Rin(3) =10,
Rm(l,2) = 1'0488$ R[n(2,3) = 5 146,

only Rin(1,3) = —183.122.
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To investigate the character of the stability of the network
we use again C; from the node 1 to the reference node and

C, between nodes 1 and 3. The corresponding
characteristic equation is in this case

il_+ 41C) - 3754C, A+41C

C,A% =0.
20 10 12

24
The coefficients ag =41/20 anda, =41C;C, are both

positive. The network is stable if a; >0, i.e.if the values
of the capacitances are chosen so that their ratio

G373 9156 .
c, 4l

3. Effective Determination of the
Character of Stability

As shown above, the network under investigation (or the

operating point of such a network) may be

1. stable, if all its input resistances and conductances are
positive,

2. unstable, if some of the input immittances are negative
and the coefficients ap and a; , denoting the lowest and

highest power of A, have different signs

3. conditionally stable (conditionally unstable) if some of
the input immittances are negative and the coefficients
ag and a;, have equal signs.

It is therefore necessary to calculate the coefficients
ag and a, . For the coefficient a, we obtain

ag = det(M) 25)

Its value can be determined easily as a by-product when
inverting the matrix M .

The coefficient a; depends on the number of parasitic
reactive elements and on their location in the network. The
number & of these elements (must be & > 2) is proportional
to the complexity of the network. Some of these elements

arc connected to the positive, the rest to the negative
immittances. The network matrix M is transformed to

obtain My, such that

Ag+pA; B
M|, - 0T PAL By , (26)
Co Dy

where
Ay is a diagonal matrix kxk,

A =diag(C,.C5...C,), C;, i=12,.k
are parameters of the reactive elements (all positive).

The coefﬂqiént ay, is then
k
ay =det(A;)det(Dg) =[] C; det(Dy), @7
i=1

and its sign is the same as the sign of the determinant of the
submatrix Dy. .
Let us apply the procedure to the network analyzed in

Example 2. The original system of node voltages
RS |
is replaced with a new system of voltages
vy, v -us, u,J
through the transformation BU'=U.
The transformation matrix |
1 o
B={0 0
1

~
S = O

The resultant admittance matrix of the network in
transformed coordinates is then

06 -01 =20
Y, =BTYB=|-01 02 o0
-20 20 41

The submatrix
Dy =[41]

and therefore  det(Dg)= 41> 0.

The determinant of the admittance matrix was not affected
by the transformation. Thus

3549
ag = del(Yb ) = "'—1-60-— <0.

The operating point is unstable.

4. Conclusion |

The stability of DC operating points of linearized
noninertial networks can be evaluated using the same set of
basic equations that have been used to calculate the
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coordinates of the operating points themselves. Each
operating point can be classified as 1. stable, 2. unstable or
3. conditionally stable (conditionally unstable). The process
of classification described in the paper is quite cffective
and can be easily incorporated into existing programs for
analysis.
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Abstract:

Thesis deals with time domain computer simulation of networks containing externally controlled switches. The
mathematical models are based on the modified nodal approach. The circuit equations are assembled in s-domain and
numerical inversion Laplace transformation is used for calculation of time response in arbitrary node. Efficient
algorithm for periodical steady state simulation was developed within the framework of thesis.

The developed program TSPIN can be used also for simulation of non-switched networks. The practical part of
thesis is devoted to the verification of used mathematical models by means of measurement and computer simulation.
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Abstract:

Presented thesis deals with a construction of models of piecewise linear (PL) systems which are suitable both for
analysis and synthesis of electrical circuits. The PL approximation can help to find all solutions of a nonlinear system
in contrast to generally used Newton’s iteration schema. So called implicit state models turned out to be the most
universal but they are computation-expensive. One of the goals of presented thesis was to decrease the cost by
decreasing of the model order. Two algorithms for one-dimensional model construction have been developed. The
first analytical method allows to design the model with no constraint and the second one reduces the model order by
means of numerical procedure. The first algorithm was generalized for some two-dimensional relations.

Piecewise linear models can be also used for nonlinear dynamic circuit synthesis. The proposed method is based
on well-known decomposition into functional blocks and was successfully demonstrated on realization of nonlinear
oscillator of third order.

This work was conducted and successfully defended at the Technical University Brno.



