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Abstract

Some contributions of higher-order s-z transforms
are exposed related with the conversion of a
continuous-time transfer function into its discrete-time
counterpart. The developed algorithm of sensitivity
analysis  with respect to mapping paramelers,
prototype coefficients and sampling rate combined
with numerical experiments can be efficiently use to
motivate the selection of s-z transform and thereby to
provide a suitable basis for an opnmal solution of a
general design problem.
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1. Introduction

A derivation of a discrete transfer function from its
continuous time prototype represents a significant stage in
discrete circuit design. In principle, the use of higher-order
s-z transforms [1-8] leads to variety of alternative
expressions. The choice can be made provided that major
properties such as complexity, frequency-frequency
linearity, stability, sensitivity etc. [9] are already known.
Currently only partial solutions of this problem have been
proposed. The method of s.c. sequence of expressions [10]
suggests the sensitivity analysis to be implemented at
multiple frequency points by a re-evaluation of equations
previously generated.  Alternatively, the sensitivity
functions are developed in terms of a discrete-frequency
variable [11]. In both cases the inevitable involvement of
the current frequency only complicates the solution.

Here below an attempt is made to consider the impact
of the sampling frequency and the basic parameters on the
transfer function performance. In result, some stages of the
general solution are determined and thereafter combined
with numerical experiments to complete the study. The

parameter-dependent .analysis is developed and sensitivity
functions with respect to the sampling rate and sets of
mapping parameters and prototype transfer coefficients are
found. The prewarping procedure carried out towards the
poles and zeros is also included. In effect, all these
helpfully assist to implement an extensive comparative
analysis and to clarify some major features of discrete
system functions obtained via different s-z mappings. The
bilinear version is taken throughout the text to serve as a
reference  and Monte-Carlo simulations are also
implemented in parallel to produce alternative assessments.

2. Evaluation procedure of discrete-
time transfer functions

Let a discrete circuit has to be designed on the base of
a continuous-time transfer function:

0=/ f1(5-5.1)[ Flfs-,.7)] -

k=1

=K {Zka ]{gaks T, M<N. N

Here the complex frequency variable s=c+ jw is
weighted by the sampling period §=s7, T=1/f,. K, is

the gain cofactor (ao =by = 1) .
The poles and zeros of the prototype (1) are specified as

sp,k = Gp,k t jwp,k ’ S:k =0z, T .]a)z k (2)
The desired discrete-time transfer function is formulated as
v KL KL -1
H(z) =K, ZBkz—k ZAkZ'k >
k=0 k=0

z= exp(o‘Tija)T), K= max{M,N}, L= max{m,n}

(3)

in the discrete-time domain after processing the prototype
(1) by a certain s-z transform

n -1
——F(z) [Zﬁkz ju'Za,,z'k} 4)
k=0

k=0

In this expression the mapping parameters {a A ,ﬂk}
have been subject to a prior normalization with respect to
max {lak|,|ﬂk|}. The general expression (4) proves to be

effective not only for mappings based on the classical
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numerical integration methods produced by a polynomlal
approximation: :

Xi+l- —Zakxl k +hZﬂkf( ik lic k) ‘ ’ (5)

k=~1

but also in case of various nonconventional methods. In .
Table 1 a selection of perspective s-z-transforms defined.on :

the ground of an equal maximal sampling rate is presented.

Normally, the prototype function (1) is subject to a
prior prewarping procedure. Some algorithms suggest the
prewarped transfer function - H'(s) to be obtained

preserving at least the shape of the prototype frequency
response. Usually, cutoff frequencies or imaginery parts of
the poles are involved in the respective re-evaluation [9].
Alternatively, it has been offerred [12] to carried out
the prewarping procedure over both parts of poles and
zeros uniformly denoted s, =0, + jw,. Substituting all

powers of z = exp(s, T) in (4) by their Euler equivalents the

oiT+ joT = o
Zi:é v ,;,B,exp[ (k+1)o 7]{ os[(l}—k)a),T] jsin](1-k)o, 7]}
: ‘ﬁfﬁ;ﬂ,exp[—

k=0/=0

+l)a, T]éos[(l—k)co,]‘]

(6)
that can be used to evaluate the prewarped poles or zeros

s, =0 % jw: . In turn, the prewarped transfer function

H'(s)= Ko[ﬁ(S ~Sp4 T)}{lﬁ[(s ~Sh T)}»| =

k=1 k=1

| —K[Zb,,s’lzaks"}-l, M<N

is obtained replacing all poles-and zeros in expression (1)
by their predistorted counterparts:

(N

following relation holds: ok = Opk @y Sip=0n, E o (8)
Table 1. Some higher-order s-z transforms |
Ref. Mapping function F(z) Ref, _ Mapping function F(z)
ADAMS MOULTON discrete integration rules GRAHAM-LINDQUIST discrete integrators [ 1]
M2 vz H021 2447
A —r:
2(l~z_l) 5-4z7" 272
5+8:7 -z HO31 0418
AM3 —-1*2—3“‘*::]‘—" 17-927' =927 4 273
(‘z ) oal 12+ 487
AM4 9+19z7 =522 4273 37-8z"" —362*2+‘8;:'3-—z'4
24(] _ z—') DOSTAL parametric transformations (a=.2927) [3]
1+az™
-1 _ -2 -3 19.-4 Dl ———— s
AMS 251+64z7 ~264z72 +10627° — 19z (1+a)(1—z")
720(1 - z“)
B » (k~01)[4]
MILEI—SIMPSON discrete integration rules TD4 11 6k+ 4z-|+(22 32 k)z + 42-3+(1+1 6k)
Ms2 2% g1e2z71 -2 -2
-2 +2z7 =2z 7 -2 )
L4477 4 772 " TIK discrete integration rule [S]
MS3 _’““““3(1 ) i 1+35804z7 4272
R -2
HAMMING discrete integration rules 2'7902(1 z ) A
17451z 43272 4 23 AL-ALAOQUI discrete differentiator [6]
HALZ 24(2_2—! _z—z) ALA 1+05358:7' + 0071827
L | 08039(1-272)
25+91z7 +43z27°+9z7 : :
HA2/3 24(: . == _2)2 LE BIHAN (X=0.793) discrete integrator [7]
-2 =2 -
) LEB 1—2’+(1+l’)2 i .
HA1/3 26+ 7327 +30z7% + 1027 2(1 - z—l)
-1 -2 -3 »
24(3 -z -z -z ) GUROVA-GEORGIEV transformation [8]
NLT 1+38765z7" +z72
29382(1-277)
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The new coefficients {a,' ,b,*} are easily computed
using the well-known elementary symmetric functions [13]:

D) [flsz.pr ©

Ish <. </ gN[ r=]

b; _ (_ I)M_,' Z

Ish <_<i,;sM

3

{ﬁs,‘”z'r . (10)

r=l

Next, the s.c. PlUg-in—Expansion method [2] is applied to

evaluate the required output coeflicients. {A w» By } in 3):

Z{ Zk:( ,/dn-,;k-,)}, ke(o,NL), (1)

i=0 1=0

M k ' '
B, =Z{b:2(ci_/dn-1,k~l )} k G(O* ML)’ (12

i=0 1=0

where provisional quantities denoted ¢;; and d,_;;_, are
evaluated after polynomials in (4) have been raised to
integer power of i €(0, K) : .

-1 -n i_ e —-ni
(a0+a,z +..4+ 0,2 )-. 0t Gz etz (13)

(ﬁo"’ﬂlz +. +ﬂn ) 10+dlz +.. + lm (14)

A simple algorithm to compute coefﬁcnems c,; and

- d,_; 4_; is shown in the Appendix A.

3. Estimates of frequency response
deviations

Some . frequency résponse estimates such as absolute
deviation &(w) between (S) and H(z) givenin (1)and (3)

= IH(S = ja)T)I—IH[z = exp(ij)ﬂ, (15)

the maximal dev1at10n Omax (@) and the mean value &,,¢

Oyp. = L Ild(w)idw, we(wl.wz) (16)

e I

are evaluated to illustrate the capacity of the procedure
described above.

In Table 2 the results of two numerical design
examples are presented. In the first example the bilinear
version appears to be superior while in the second one
some other mappings indicate superiority. Obviously, the
“best” choice is definitely related with the design problem
of consideration and looking for an optimal solution a
decision have to be made in any particular case.

Table 2. Higher-order s-z transforms vs frequency response estimates

Numerical example No 1 [11}: Numerical example No 2 [12]:
4-th order 40 Hz band-pass filter with central 6-th order 2 kHz band-pass filter with central
frequency fo=1kHz, f,=8kHz, f€(0,2kHz) | frequency f,=24kHz, f,=32kHz, f (0,8 kHz)
gain K, -0.078646895 -0.048719272
-87.766252 + j6188.2513, -2854.8133 + j22177.552,
poles -89.742324 + j6376.2582 -4999.1447 + j12849.367,
; -1076.3239 & j8145.0575
Z€eros £j5754.6882, 1+ j6847.0533 +j38773.293, +j4153.8122, 0.0
rule Siag» dB Opas - 4B 0,,S Siar > dB S »dB WS
AM2 .0005 -.0016 1003 5811 -.7289 5369
AM3 .0084 -.0037 1006 1.3029 .5789 5441
AMd4 .0045 0077 989 1.2729 4864 5436
AMS .0152 -.0067 1011 2133 -.2880 5378
MS§2 .0161 .0020 940 2362 4592 5434
MS3 .0018 .0005 944 .0256 -.0494 5407
HA1/2 .0030 .0003 - 1051 3847 .0253 809
HA2/3 .0014 -.0006 1020 1146 -.0818 5405
HAL1/3 .0020 -.0005 1016 .4533 -.1500 5156
Ho021 .0091 .0026 1061 1.1967 4492 5434
HO31 .0028 .0005 1003 3723 .0304 5411
HO041 .0055 .0010 942 .2742 1516 5401
DI .0032 .0059 971 4.4943 93.3018 6171
TD4 .0288 -.0021 1062 1.3308 -1.1146 5347
TIK .0015 .0005 991 - .0915 -.1359 5402
ALA .0019 -.0006 1019 8.0252 101.0826 6171
LEB 3754 1.0756 1018 10.3201 98.3522 661
NTL .0018 .0007 945 0.0426 -.0730 5405
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4. Sensitivity estimates with respect to
the initial parameters

In fact, the required coefficients {A By } determined
by (I1) and (12) are functions of (1) the prototype
coefficients {a j,bj}and (2) the mapping . coefficients

{a, , ﬂ,} . Without loss of generality the. next consideration

- . L] - .
is done in terms of {spv,(,sz’k} and {sp,k,sz.k} assuming

that {aj,bj} and {a;,b;} can be always found from 9
and (10). ; :

In what follows a procedure to assess the logarithmic
sensitivity - of coefficients {A,,,Bk} with respect to the
both sets of parameters {a,,w,}and {a,, /)’,.}mentioned

above is developed. Vectors x and p are introduced
accounting for the parameters involved:

ol Hoolo Hor o Ho |

; 17
ST
p=[AB] =[Ao Ay Agpa BOBI"'BKLH}T

Henceforth, boldface letters indicate vectors. and
matrices and the superscript T denotes transpose.

The sensitivity matrix defined as S? = xJp/ péx is:

A A A QA
TS Ul 0 085, 80,808) |

SPeR (2KL+2)X(2KL+2L+2)
(18)

The block-matrix ngz is decomposed into sub-matrices

with equal dimensions g (KL+1)K , their elements express

the individual sensitivities with respect to the original poles
and zeros. It can be shown that the following matrix
factorisations hold:

Sg,p =St'x‘PaPa’ Sg,z =S?sza’
Sa,=S)P,P

a”w-*

B
Sw,z = Sl?z‘bzm

Likewise, the block-matrix SQ’Z is decomposed into

sub-matrices with equal dimensions ‘.R(KL”)“(L”), their
elements determine the individual sensitivities with respect

to the mapping coefficients. Similarly,
S5 =82, +8)P.P,, SE=8} +spz,Z,, 0
Sh =S5, +S)P,P;, SP =83 +SPZ,Z,

The detailed description of all matrix factors denoted
on the right-hand side in (19) and (20) is given in
Appendix B. .

(19)

Looking for a general solution, the well-known matrix

norms ||]] [13] can be introduced to assess the sensitivity.
“S" - gives a global sensitivity estimate. usf;;(‘j - offers

separate assessments of the prototype coefficient's

. AB
influence. IS5

IF and “S('::Z ”1 measure the contribution

of the mapping parameters, S| and "S“v/’"1 expose the

most sensitive output coefficient and the most influential
mapping parameter respectively. What is more important,
the last two. norms assess the precision of the initial
coefficient specification required to achieve the prescribed
precision. of thé output coefficients. The most sensitive

element lS" f| of the matrix Sindicates the highest
L * Imax .

individual sensitivity. ,

In Table 3 sensitivity estimates obtained from the
second example are presented. Data of bilinear version are
given in absolute values and included in the first line but
the others are presented in a quotient form to their bilinear
counterparts. The data in the last column denoted A are
produced by Monte-Carlo procedure. They measure the
area of a tolerance field bounded by the upper and the
lower worst-case magnitude values in the frequency range

S/ e( Smins fmax). During 100 simulations the coefficients
{Ak,B,t}have been computed in terms of parameters

{ak ,,B,,} perturbed randomly by up to +0.1% and

subsequently a frequency response at 500 frequency points
has been evaluated.

Comparing the last column with the others one can
find out certain corrélation between corresponding data.
Hence the norms may serve as reliable sensitivity estimates.
The contributions specific for each type of mappings and
each kind of parameters can be also distinguished.

S. Sensitivity estimates with respect to
the sampling rate

The following analysis is done in a classical way in
terms of the period T instead of f, =1/T . Implying the

coefficients {a;(s: ), b;(s:)} are implicit function of T

and using (3) one can define S§' ~ Td H/HdT as

SH =
KL dB KL KL dA KL
Zwliz-k_z ksB,g""” Z_kz~k_z ksAkz"”l
k=0 dr k=0 k=0 dr k=0
- KL ; KL
Ty Bzt Ty Az
k=0 k=0

(21)
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Table 3. Higher-order s-z transforms vs sensitivity matrix estimates

Next, two vectors are introduced denoted 2,7 ¢ 3(“‘”) :

0 _-1_-2 _,»—KL]T
zZ Z -z s

dr |:dz°'dz" dz™2 dz““‘:‘r (22)

EEar=\ar ar dar T ar
and two singular row-matrices A,B e %X DKL) 30
constituted:
A A A B. B, - B,
A={Ak}=[ "o "‘],B={Bk}=[ " “](m

Likewise, matrices denoted K,;\ and l~3,ﬁ are formulated:

A={dd, [dT}, A={k4,}, ke(0,KL), (24)
B={aB, Jar}, B={kB,]},

Derivatives denoted above are determined in a product
form using

) ] d(oy T+ joy ,7)

T sk, a | 26)
db; ﬁ’: a5 dlor, Tt jor,T)

dr ",(=0ds,:,Z dT ’

Numerical example No 2 [12]:
6-th order 2 kHz band-pass filter with central frequency f, =24kHz, f_ =32kHz, f e(0,8kHz)
o, Issz], 5231, Is I5. 4, [l BantdBs™]
absolute values
AM2 427.00 13.98 426.80 31370 i 962.80 133.20 i 183.0
. relative values
AM3 2.04 1878 1.94 2.73 2.34 2.60 2.39
AM4 1.79 17.94 1.69 1.73 2.54 1.06 3.04
AMS ) 2.01 25.59 1.90 1.79 2.90 .94 2.62
MS2 .01 .03 .01 .02 .01 .02 1.13
MS3 .30 2.11 .29 .53 22 .52 1.01
HAL/2 1.47 1.59 1.47 3.56 .81 2.99 2.07
HA2/3 - .18 1.23 1.78 .29 19 .25 1.32
HA1/3 39 1.55 .38 71 39 .61 1.53
HO021 2.07 11.04 2.04 5.02 1.44 5.19 222
HO031 1.84 1.47 1.84 4.18 1.07 2.82 2.29
HO041 2.61 1639 2.55 7.38 1.51 6.70 2.07
TD1 1.28 1.64 1.27 1.17 1.12 1.28 3.37
TD4 1.87 12.34 1.82 2.39 2.33 222 1.15
TIK .54 5.11 .55 1.28 35 1.16 1.02
ALA 8.24 38.43 8.15 20.68 3.92 22.16 2.64
LEB 104.00 1.44 104.10 212.60 40.59 28.30 443
NTL 34 2.61 33 .66 25 63 1.01

ke(0.KL)  (25)

84y da] 3B, db]

Sa; dT " ob, dT

i

in the products

The first cofactors in (26) are found from (9) and (10),
but expression (6) is used to derive the second cofactors.
It can be shown that the next relations hold:

Bz=-sBz, A%Z=-sAz 27

Finally, substituting (22)-(25) and (27) in (21) and
assuming s = j one can derive the result given below:

., . Bo-Br _ Az-Az
St =Spe + jSim =T Bz -T Az

.(fzz x.z) (B Az) (28)
=l -~ jwl| =
Bz Az Bz Az

In fact, the matrix ratios ‘given above represent real
numbers but the coefficient S can not be evaluated
straightforward. The reason is that matrices A and B are
noninvertible because of matrix singularity. However, S7/
could be assessed by means of ratios N , /M , valid for an
arbitrary vector z ([13], ch.6):

& A N,
A4~ Tad/H "™,

where for z# 0 the following expressions are valid:

(29)
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v 'SRe

[+,

N A=sup—H—;— ="qu yM ,=inf

ods 1
A T,

respecting the singularity of both matrices in (23). Setting

“up M, =Mpg =¢£—0, onecan write

8, -1l
€2y
However, the factor ¢ will disappear taking estimates in a

quotient form as mentioned above. -
A couple of parameters are introduced to complete the

analysis evaluated for w € (wmin , a)max) :

<% = Ll -1, sinl<oz =0 |

- Dy=arcig(T,/25), D=y +(0Z,)’ (2

Unlike all other estimates considered to this point T,
is the only frequency‘ dependent one. Alternatively, the
worst case value T, (a) = a)max) can be used.

In Table 4 sensitivity estimates X, and X, valid for

the second example are presented. Data are arranged as in
Table 3. Monte-Carlo sensitivity analysis is implemented as

described above towards H[z = exp( jkoT )] A cduple of

expressions are defined as

A= arctg(‘HlmI/leRel),, A= (\/Hée + szm ] (33)

=30 (356)‘

They.are evaluated for @ e(wmin,a)max) to measure
the area of tolerance fields. The pseudo-random
perturbations within the range +0.001f, are generated to
determine the sampling rate impact on the output
coefficients {Ak ,B,,} . Comparing data in columns 3 and 4

with those in columns 5 and 6 respectively one can
establish a certain correlation between data. Hence, they

- can be used to assess the sensitivity in this case and the
contributions - specific for each ‘mapping can be also

distinguished.

6. Conclusions

A compact procedure to derive a discrete-time transfer
function from its continuous-time pratotype employing
rational higher-order s-z transform functions is presented.
An algorithm based on some matrix norms is proposed to
assess the output coefficient sensitivity with respect to the
prototype coefficients, the mapping parameters and the
sampling rate. All operations are completely formalised.
The estimate values appears to be specific for each s-z
transform and represent a reliable basis to discuss the
mapping applied properties. The developed - analysis
combined with numerical experiments can be efficiently
used to motivate the selection of s-z transformation and
thereby to provide a suitable base for an optimal design
solution.

Table 4. Higher-order s-z transforms vs sensitivity estimates with respect to the sampling

rate
Numerical example No 2 [12]:
6-th order 2 kHz band-pass filter with central frequency f,, = 24kHz, f, =32 kHz, wT(0, 7/ 2)
Zr ‘ I, T, (0T = 7/2) A, A,
k absolute values
AM2 8.1661 7.2746 .51589 - 10.936 38.800 118.0
: relative values
AM3 .84 .99 1.14 ' 91 .99 .82
AM4 .59 - 1.00 1.47 .80 95 1.24
AMS5 .16 ) 1.01 2.51 .68 91 1.83
MS2 40 3.00 2.59 2.02 1.96 2.42
MS3 . .57 ' 2.28 2.23 1.57 2.16 1.32
- HA12 St 1.22 1.79 x .90 1.50 1.29
HA2/3 .63 ~ 2.08 209 1.46 2.55 141
HA1/3 .65 1.39 1.70 1.04 1.95 1.32
HO21 .61 - .60 .99 .60 1.74 .90
HO031 60 .56 1.78 1.04 1.51 1.28
HO041 .96 141 1.98 1.99 1.94 1.38
TD1 79 99 1.20 .88 : 1.34 92
TD4 .81 4.72 2.47 3.20 3.94 4.88
TIK 56 , 2.25 2.23 1.55 2.17 1.27
ALA .29 2.01 2.55 1.36 2.25 97
LEB | 727823 ‘ 23.44 .09 208.35 1.88 5.93
NTL .57 2.27 2.23 1.57 2.16 1.31
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Appendix A Appendix B

Suppose coefficients ¢;,and d,_; ,_, in (11)-(14) are
elements of two sets of vectors denoted ¢, , i e(l,NL +1)

and d, i e(l, ML + 1) . Thus, two quasi-triangular matrices
are defined:

70 a 0]

r
C= CIT em(k‘l,u)x(xul),n: d e R(KL+Dx(KL+1)

cATVlAl dM”
, (A1)
Obviously, their first two lines look as follows:
cg=[1o0..0] df=[to0..0 \
(A2)

Cll =[ao al az e

o &7 = A s o]

A simple procedure can be offered.to find the others:
1.Define a circulant matrix P [13] in a form

01 0
01 ,
P= o e REHE g o max(M, N) (A3)
01 f
0 0

2. Compute  a couple of auxiliary band matrices
Q. eR* and Q, €% in a row-by-row sequence with
an initial step

of af
0 : 0

Qc,l =Qc,0P= P, Qd.l =Qd‘0P= P, (A4)
0 0

using the  recurrent  relations Q. =Q,,P,

Quiv1 =Q,;P. Hence, any element belonging to the
i+ 1~ strow can be defined as

,+11=fgq( e

1=

(AS5)

3.Finally, compute both required matrices C=Cj and
D=D employing the same scheme and starting with

¢ dg

0 : 0
€ =CQ, = Q.. Dy =DyQ, = Lz

The elements of sub-matrices §* e St{XE+(K1) 54

SP e gy (KL+Dx(K+D) 4y (20) are found from (11) and (12) as

{ Lo },,e(o N), k (o, N2), |

A, Pa;

{ ! ﬁB"} i (0, M), k e(0, ML)

(B1)

By &b
The.clements of S, , 87 5, S?, . s} ap e fKE(L) 4

(20) are determined from (11) and (12) in a product form as

24y Pcy a, | A, iy B
Peiy Ga, A | d, k1 OB A

, : . (B2)
AB, ﬁci,l‘ a, 1 @B, ﬁdn—i,kd yis
cey da, By Oy g B B
The eléments
N ﬁ * . ﬁ * 5 f CNE 2 *
. o, o b, -5’—(», L Sw, o b, Ao, o, L (B3)
c°cr, Jw, do, Ao,
of sub-matrices denoted in ( 19)
[PGCT Pfdﬂ' ] € m 2KXK P(l) = [PO'(I) : P(l)(l) "R 2Rk
Z(T =[ZGHSZ!I)U] e")zz‘k‘rk * Z(I) Z[ZU(U;Z(I)II) 9‘2,\\1‘
' (B4)

are found from (6) with respcct to original poles and zeros.
The elements

do, dw,
e, a; e, % [ re(l.N),
. . (BS)
fo, -Cw, (LM
|22 B R

of the sub-matrices denoted in (20)

T . T .

P,= [Paa Pam] € 9‘2kx(l,+l)’ sz [PU/JEPw/i] € 9{2Kx(L+l)’
) T _ . ’

Z,= {Z‘m :Zwa] e 912[(.\(1,4(!), Z/]: [Zaﬁzz‘mﬂ] e mZKx(I,H),

(B6)

are found differentiating (6) with respect to the mapping
parameters a; and f, respectively. '

The elements

AR O A i I Y
o”cr,_p c'?a),,p c’?o'r'z c?a),‘z
in sub-matrices P, enK+N2K g z, e K2k gy
(19) are evaluated straightway from expressions (9) and
(10).  The derivatives denoted ¢, ,/da,” and
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Ad,_; 41 /P, in (B2) can be considered as elements -of
two 3-dimensional matrices respectively:

C L+ + x + éb LA x{(KE+1)x( L+
(_:_ c RIKL Dx(KL l‘) (L ')’EEE‘”(“ Dx{KL+1)x(£+1) (B8)
ca z

Their elements subscribed i,/,r constitute sub-matrices
ACléa, and ED|IB..
performing an additional step as follows. Let a

differentiation with respect to a, and B, is carried out in
left-hand sides of (13) and (14). The result is

They - can be = determined

J R Nk _ ok
———(a0+a,z a2 ") =k(a0+alz yooa,z ") z "
ar

(v B = KBz B ) 2
(B9)

The quantities on right-hand sides.could be considered

b,

as elements of two sets of vectors denoted Jej /a"a, and
447 /3B, . Each quantity associated with the factor z77 is
embedded into p+1-s/ successive position. Both sets

constitute respectively successive rows of both 3D matrices
0C/da and &D/FB. Thereby each layer of them

represents itself a matrix constituted in a way similar to this
proposed in Appendix A to form matrices C and:D.
Taking into account expressions in (B9) one can

found simultaneously the elements of vectors o”c[/é’a,
and 4d] /8B, if ¢]_, and d]_, are multiplied by k and

shifted r positions right respecting the factor z™"
Implementing such row-by-row computations any element

embedded in i +1- st row of layers a”C/é’a-,.,(r =0,.‘.,n)
and SD/3B,,(r=0

previous-row element according to the following rule:

.,m) is obtained in terms of a certain

q(i+1, j+r)=iq(i,j) (B10)

In result, the required matrices are constituted and
their » — th layers have the following form:

[0..00 | 0..00 1
0..03¢}/da, 0.. oadg/aﬂ
7€ 1000 Tla L P 08d! /54
—=[0..00¢, /Ox ,——={ 0... aof.
- SR K (B11)
10..08 ¢}y, /00, | 0..08d}y,, /08
contaro]  Jeiofensare ol
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