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Abstract

In this paper, basic terms of the higher order
spectrum theory as moments and cumulants of random
variables and stationary random processes as well as
cumulant and moment spectra are introduced. A part
of this paper is devoted to bispectrum estimators. The
objective of this paper is also description of
bispectrum application for quadratic phase coupling

&ection. P
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1. Introduction

One frequently used digital signal processing
technique has been the estimation of the power spectrum of
discrete-time deterministic or stochastic signals. In power
spectrum estimation, the process under consideration is
treated as a superposition of uncorrelated - harmonic
components. The distribution of power among these
frequency components is then estimated. As such, phase
relations between frequency components are suppressed.
The information contained in the power spectrum is
essentially presented in autocorrelation sequence; this
would suffice for the complete statistical description of a
Gaussian process of known mean.

However, there are practical situations where we have
to look beyond the power spectrum or autocorrelation
domain to obtain information regarding deviation from
Gaussianess and presence of nonlinearities. The higher-
order spectra (HOS) (greater than two), also known as
polyspectra [1,2] defined in terms of higher-order
statistics, do contain such information. The well-known
example of the HOS is the third-order spectrum, called a
bispectrum, which is defined to be the Fourier transform of

the third-order cumulant sequence of a stationary random

process. The power spectrum is the second-order
spectrum. There are four motivations behind the use of
polyspectral analysis in signal processing [1,2}:

e Suppressing Gaussian noise of unknown spectral
characteristics in detection, parameter estimation,
analysis and classification problems; bispectrum also
suppresses non-Gaussian noise with symmetric
probability density function.

* Reconstructing the phase and magnitude response of
signals or systems. ‘

e Detecting and characterizing nonlinearities in time
series.

e The components of the HOS can be used as advanced
features based on which a classification of states of
analysed system can be carried out. This approach can
be used in the field of quality control and diagnostics
(see e.g. [3D). ‘

The facts confirming the above mentioned statements
as well as a comprehensive review of basic applications of
higher-order statistics and HOS are discussed in detail in

- [1,2]).

The objective of this paper is to introduce basic terms
of HOS theory as well as to point out to possible
application of polyspectral analysis in the field of quadratic
phase coupling detection. The particular topics of the paper
are illustrated by using conveniently selected examples.

2. Moments and Cumulants of
Random Variables ’

Given a set of n real random variables {x,, x,, ... ,x,}
their joint moments of order r=k,+k;+ ... +k, are given by:

bk k]_ {xk, b k}_
Mom[x, 1 X 5o X, |= ER XX (=

» (D

=(_ .),a’q>(wl,a>2,...,wn)
ol dws ...onk

o =a,y = =0,=0

where

(o, ,,...,0,) = E exp[j(w,xl+w2x2+...+w,,x,,)]} )
is the first joint characteristic function of the random
variables . {x;, x; .. ,x,}. E{.} denotes the expectation
operation. For two random variables {x,, x;} we have e.g.
the following second-order moments:

Mom[xy,x,]= E{x.x, }, Mom[xl2 ] = E{x12 },

Mom[x%] =E {x% } 3)

The second ~ joint  characteristic function

q’(wl,wz,...,wn) is defined as the natural logarithm of

o(,,0,,..,0,);ie.
¥(@,,0,,...0,)=hd0,a0,,..,0,) @)



16 Polyspectral Analysis of Signals: An Introduction
D. KOCUR, R. STANKO

Radioengineering
Vol. 7, No. 2, June 1998

The joint cumulants of the rth order

ky k . .
Cum[xl',xzz ,...,x,',"'] are defined as the coefficients in

the Taylor expansion of the second characteristic function
about zero, i.e.,

) (_j), 3"?(@,&}2,...,0),,)
o dy? .. dakn

ki k&
Cum xl' ,x22 ,...,x,’f"

)

oy=) =...=ay=0
Thus, the joint cumulants can be expressed in terms of the
joint moments of a set of random variables. E.g. the
moments

my = Momx)|= E{x;},

my = Morfxy, xi]= E{x.x},

m= Mom[xl,x,,xl] = E{xl.xl.xl},

my = Mon{x,,x,,x,,x,] = E{x1 Xy X)X }, 6)
of random variable {x,} are related to its cumulants by

¢ =Cumlx;|=m,

c3 = Cum[xl ,xl]= my —-mlz ,

cy= Cum[xl 1 X1, X ] =m3 —3mym, +2mi3 ,

4 = Cum[xl,xl,xl,xl] =

)

=mg —4mymy ~ 3m% + 12m2m12 - Gmf.

3. Moments and Cumulants of
Stationary Processes

If{X(®)}, k=0, £ 1, £2, *3, .. is a real stationary
random process and its moments up to order n exist, then

Mom{ X (k), X(k+7),..., X(k+T,_y)] =

= E{X(R). X(k+T1 )00 Xk +7,_1)]} ®)
will depend only on the time differences 7, 7,, ..., T,

where 7,=0, £ 1, £2, &3, ... for all i. Now, we can write
the moments of {X(k)} as: ‘
(21, T e s Ty ) = EAX(R). Xk +7))... X(+7,_p).

v ®
Similarly, the n-th order cumulants of {X(k)} are ( n-1)
dimensional functions which we can write in the form:

i@, Ty Tosy ) = Cuml X (k), X (k +7T,),...,
JXk+1, )] (10)

Then, we can obtain the following relationships between

moments and cumulant sequences of X(k):
the 1-st order cumulant (mean value):

¢ =m = E{X(k)}, (11)

the 2-nd order cumulant (covariance sequence):
e3 (7)) = m5 (1)) = (m)? = my (=1) = (m)? = cf(~7)),
(12)

the 3-rd order cumulant:

¢; (1,,7,)=m] (7,,7,) —m[m; (7)) + mj (1,) +

+m3 (Ty = T1)1+2(mf)>. (13)
By putting 7,=0 in (12) and (13) and assuming
mi =0 we get

73 = E(X(0*} =c3(0), 7§ = E{X(K)*} =c§(00),

Y3 = EIX(k)* }-3y51* = c§ (0.0,0). (14)

The quantities Y3, 7Y; and 7Y} are called variance,

skewness and kurtosis, respectively. The above given
equations gives the variance, skewness and kurtosis
measures in terms of cumulant lags.

4. Cumulant Spectra

Let us suppose that the process {X(k)}, k= 0, * 1,
t2, +£3 .. is real, strictly stationary with n-th order
cumulant sequences cj (T},T3,-..,T,_1) defined by (10).

Then, assuming that cumulant sequence satisfies the
condition of absolute summation the n-th order cumulant

spectrum  Cj (®),®3,...,0,_1) of {X(k)} exists, is
continuous, and is defined as the (#-1) dimensional discrete

Fourier transform of the n-th order cumulant sequence. The
n-th order cumulant spectrum is thus defined:

CH (0,000, @p_y) = 2, ..

3] =00

26:(71,12,...,1'"_1)

Tp] =—o°
-eXp{-j(@) Ty +.. AWy Ty )}
for joj| S5 i= 1,2, .., n-l, |0, + @, +...+ @, | S £ (15)

The power spectrum, bispectrum and trispectrum are
special cases of the n-th order cumulants. They are defined
by (15) for n=2, 3, 4 and can be expressed as follows:

Power spectrum: n=2

Ci (@)= Xcimexp{-j(an)} for jo|sm (16)

© T=—o0

Bispectrum: n=3

Cl@po)= X i@, m)expl-j(ogT +@y1,))
1" =—oefz =00
an
for loy|s 7, |op) S 7|y + )< 7.
Trispectrum: n=4

C:(wthst): 2 Z 232(71’72,73)

1‘1 =-en‘tz=—oe1’3=-en‘
-exXp{=Jj(®,7, + ®,7, +W;7;)} (18)
for joy| S 7, |oy|<7, |os|s7, o+ +ansn,
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where ¢ (1,7,,...,

sequence of {X(k)}.
The definitions of the spectra

Mg (9,0,,...,0,_,) are similar to those given for the
cumulant spectra (15), where the cumulants
¢n(%1,72,...,Tp-1) are substituted by the moments

Ti—1)is the i-th order cumulant

moment

My (T1,7250.,Tp-1) . It has been shown that polyspectral
analysis based on cumulant spectra can find more
applications than that of moment spectra. The motivation
for using cumulants rather than moments is discussed e.g.
in {1]. A comprehensive review of basic properties of
cumulants, moments as well as cumulant and moment
spectra can be found e.g. in [1,2,4].

5. Bispectrum

In this tutorial review the emphasis is put on the third-
order spectrum, also called the bispectrum, its properties
and several application problems that can directly benefit
from it.

Let {X(k)} be a real, discrete, zero-mean stationary
process.

If my*(7y,7,) denotes the third moment sequence of
X1}, ie.,

M3x('l'l,’l'2) = E{X(k)X(k + Tl)X(k + 1'2)}
then the bispectrum of {X(k)} is defined as

(19)

B@,@)= Y Xmy*(r,7;)exp{-j(@y7, +@y7,)}
1'l 2200 1'2 =00
(20)

Since the third-order moments and cumulants are identical,
the bispectrum is the third-order cumulant spectrum [1,2].

It follows from (19) that the third moments obey the
following symmetry properties [1, 2]:
my*(71,72) =m3” (73,7)) = my* (=13,7y — 75) =
=m3" (T2 ~ 71,=71) =m3” (7]~ Tp,~13) =

=my* (~1},72 = 7) @n
As consequence, knowing the third moments in any one of
the six sectors, I through VI, shown in Fig. 1(a), would
enable us to find the entire third moment sequence. These
sectors include their boundaries so that, for example, sector
I is an infinite wedge bounded by the lines 7; =0, and
T =Ty, 7,72 20.

From the bispectrum definition and the propertles of
the third-order moments, it follows :
® B(w,,w,)is generally complex, i.e., it has magnitude

IB(a),,a)z)l and phase ¥;(0,,,)

B(wy, ;) =|B(w),0,)|exp{/¥5 (01,®,)}, (22)
® B(w,,w,) is doubly periodic with period 27 , i.e.
B(w,w;) = B(w, + 27,0, +27). 3)

® Symmetry regions in bispectrum domain :
B(wy,,) = B(w,,m,) = B' (~0,,~0,)

= B‘ ("'wl ,—wz) = B(-wl - 602 ,wz)
- ;) = B(~w, - w,,m,)

= B(w,,~0, — ,). (24)
Thus knowledge of the bispectral in the triangular
region @, 20, 2 @,,w, +w, S shown in Fig. 1(b) is
enough for a complete description of the bispectrum. It is
worth noting that the computation of B(w;,®,) in (20) is

done over one of the twelve sectors shown in Fig. 1(b) and
the symmetries (24) are then utilized.

T, \ 4
* (-w2,%) .
N 0,
'(-n.m \ Om) e ’
O S~ \ {m2,n/2)
X2 <
@ ® i IR B n0)
o (-n,0; , \\ ~ o ©,
@ @ (-n/2~%/2) ¢ \ = Qr.:n/Z)
O, AN

(W2-m)
AY

= B((Dl ,"'(Ul

~
()

Fig. 1. (a) Symmetry regions of the third-order moments (21)
(b) Symmetry regions of the bispectrum (24)

6. Bispectrum Estimators

The problem met within practice is one of estimating
the bispectrum of a process when a finite set of observation
measurements is given. There are two chief approaches that
have been used to estimate the bispectrum, namely, the
conventional (Fourier type) and the parametric approach
which is based on autoregresive (AR), moving average
(MA), and ARMA models. The conventional methods for
bispectrum estimation and their properties is the subject of
discussion in this section. They may be classified into the
following two classes:

* indirect class of techniques which are approximations of
the definition of the bispectrum given by (21) and (22),
e direct class of techniques.

While these approximations are straightforward, limitations
on statistical variance of the estimates, computer time, and
memory impose severe problems on their implementation.
In fact, the computations may be surprisingly expensive
despite the use of fast Fourier transform (FFT) algorithms.

6.1 Indirect Class of Conventional
Bispectrum Estimators

Let {X(1), X(2), ... , X(N)} be the given data set.
Then in order to estlmate blspectrum the following steps
should be done:
1) Segment the data into X records of M samples each, i.e.,
N=KM.
2) Subtract the average value of each record.
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3) Assuming that {x k), k=0, I, ..., M-I} is the data set
per segment i=J, 2, ..., K obtain an estimate of the
third-moment sequence:

R Sz .
m= (1,1) =% YOO +1)x P +1y) (25)
=51
where
i =12 ..,K
s =max(0, -1y, -13)
s;  =min(M-1, M-1-1,, M-1~1,).

i
4) Average m3x( )(1‘1 »T2) over all segments:

) 1 K _ v
my*(11,7y) = ;st"“’(rl »T2)- (26)
i=1
5) Generate the bispectrum estimate:
L L
By (0,0,)= 2 z My* (7, T (1,75)
1'|=~L Tz=‘L
-exp{=j(@17; + @,73)} @7

where L<M-1 and W(t,,7,)is two-dimensional window

function. Let us note that the computations of the
bispectrum estimate in (27) may be substantially reduced if
symmetry properties of third moments (21) are taken into

account for the calculation of m;* (i)(‘t,,‘rz) in (25) and if

the symmetry properties of the bispectrum show in (24) are
incorporated in the computations of (27).

As in the case of conventional power spectrum
estimation, to get better estimates, suitable windows should
be used. The windows function should satisfy the following
constraints:

a) W(r,,fz)=W(‘r2,1:,)=W(—fr,,1'2 -T,)=
=W(t,-1,,~T,)
(symmetry properties of third moments);
b) W(7),73)=0 outside the region of support of

M3* (r1,73);
¢) #(0,0) =1 (normalizing condition);
d) W(w,w,)20, forall (0,0,). 29)

A class of functions which satisfies constraints (30), for
W(r,,t,), is the following:

@8)

W(11,73) = d(7))d(z;)d(t; -1,), (30)
where

d(r))=d(-1y), @31

d(t)) =0, 7;1>L (32)

di0)=1, (33)

D(w) 20, forall w (34)

Equations (30) and (31-34) allow a reconstruction of two-
dimensional window functions for bispectrum estimation
using standard one-dimensional lag windows. However, not
all conventional power spectrum windows satisfy constrain
(34) (for the details see e.g. [1, 2]).

6.2 Direct Class of Conventional
Bispectrum Estimators

Let {X(I), X(2), ... , X(N)} be the available set of
observations for bispectrum estimation. Let us assume that
fs is the sampling frequency and Ay = f,/Ny is the
required spacing between frequency samples in the
bispectrum domain along horizontal or vertical direction.
Thus Ny is the total number of frequency samples.

1) Segment the data into K segments of M samples each,
i.e., N=KM, and subtract the average value of each
segment. If necessary, add zeros at each segment to
obtain a convenient length M for the FFT.

2) Assuming that {X? (%), k=0, 1, ..., M-1} are the data of
segment {/}, generate the DFT coefficients:

M-1
YO =— 3 XOWexp(- j2ntd/ M), (33)
k=0

A=1,2,..,M2 i=12..,K
3) In general, M= M;xN,, where M, is a positive
integer (assumed odd number), ‘i.e., My =2L+1.
Since M is even and M, is odd, we compromise on
the value of Ny (closest integer). Estimate the

bispectrum by frequency-domain averaging:

- R

b= 3 SO0+ k)00, +ky)

k=L ky=-1L

.Y(i).(ll +2/2 +kl + kz)
over the triangular region: '
0<A; <A and 4 +4, < £, /2 (Fig.1(b)).
For the special case where no averaging is performed in
the bispectrum domain M;=1, L,;=0and therefore :

li(al,/lz)=X‘2~Y<"(A)Y“’(12)Y“)'(A+Aa) 37
0

4) The bispectrum estimate of the given data is the average
over the X pieces:

(36)

A 1&.
Bo(@n,00) = Lby(an, ;)
i=

(33)
where
' 2 2

7. Quadratic Phase Coupling

The bispectrum can find many applications [1, 2.
However, in this paper we will study just one. There are
situations in practice where because of interaction between
two harmonic components of a process there is contribution
to the power at their sum and/or difference frequencies.
Such a phenomenon which could be due to quadratic
nonlinearities gives rise to certain phase relations called
quadratic phase coupling. In certain application it is
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necessary to find out if peaks at harmonically related
position in the power spectrum are, in fact, coupled. Since
the power spectrum suppressed all phase relations it cannot
provide the answer. The bispectrum, however, is capable of
detecting and quantifying phase coupling [1, 2].

A possible application of the quadratic phase
detection in the field of automatic diagnosis was applied
e.g. in [3].

We will illustrate this phenomenon by the following
simple example. Let us consider the processes:

X (k) = cos(Ak + @) +cos(L,k + @)

+cos(Ayk +@3) (40)
and
Xy (k) = cos(Aik + @) +cos(A,k + 9,)
+cos(Ak +¢, +9,) “1n
where i3 =4+, ie,(4,4,4;)are  harmonically

related and ¢,,p,,p; are independent random variables
uniformly distributed between [0,27].

P (@) Ry(®)
- ‘ -
A t z‘z A’: @ A \ x: l, ®
)
IBI(co l,mz)l 2
Zero
A _.:.:.:; N\
e \
. \ -
A, T o,

(b).

(@
Fig. 2. Quadratic phase coupling.
a) Power spectrum and bispectrum of Xi(k) described by
(40). :
b) Power spectrum and bispectrum of Xu(k) described by
(41).

From (40), it is apparent that A, is an independent random-
phase variable. On the other hand, A, of Xy (k) in (41) is a
result of phase coupling between A, and 4,. One can
easily verify that Xj(k) and Xy (k) have identical power
spectra (P, (w)= P, (co)) consisting of impulses at
A,4,and A,. However, the bispectrum of Xyk) is
identically zero whereas the bispectrum of Xy (k) shows an
impulse in the triangular region
@, 20,0, 2@,,, +®, S7. The impulse is located at
o, =X,0;, =4, if A 24,. The power spectrum and the
magnitude bispectrum illustrating the above presented
considerations concerning quadratic phase coupling

phenomenon for the discussed example are given in the
Fig. 2.

8. Examples

Phenomenon of quadratic phase coupling and ability
of the conventional methods to resolve harmonic
components in the bispectrum domain will be illustrated in
this section. The objective of this section is also an
illustration of characteristic properties of bispectrum of
Gaussian signal.

Example 1: Consider the real discrete process

X(n)=Y cos(mn+d,)+W(n), i=a, .. f (42)
i

where
@, =2r(0.076125),
o, =2r(0288875),
0, =0, +0,, O =0, +0y,
D, =P, +P_, D=, +D,,
where @, ,...,®, are independent and uniformly distributed
on (0,27).
The true bispectrum magnitude has impulses at
(0,,0.)and (w,,w,). The level of the additive white
Gaussian noise (W(n)) was set at -40dB. Fig. 3(a),
shows the bispectrum magnitude estimate by using contour
plot provided by the conventional indirect method when 64
records of 128 samples each are taken. We can see that

method is successful in resolving the two peaks in this case.
Fig. 3(b), shows the corresponding estimates when there

o, =27(009375),
o, =2m(0.3045),

.are just 16 records with only 40 samples each. From the

Fig. 3, it can be seen that magnitude bispectrum could be
used for the quadratic phase coupling phenomenon
detection. The results of the computer experiment also
confirms that for successful quadratic phase coupling
detection it is neccessary to use a corresponding method of
bispectrum estimation. The conventional approach have
failed to resolve the two peaks.

Example 2: Consider zero-mean Gaussian white noise with
unit standard deviation. Let us assume that we have
available 100000 samples of process. Figure 4 shows the
averaged bispectrum for segment lengts M=100 and
number of averaging K=10 (Fig. 4.(a)), K=100 (Fig. 4.(b)),
K=1000 (Fig.4.(c)). Here, conventional indirect method
with optimal window was used for computation. The results
of the computer experiment have shown that the mean and
variance of the bispectrum magnitude of the tested
Gaussian signal converge asymptotically to zero (Tab. 1.).
Therefore we can say that these result indicate that
Gaussian signal bispectrum obtained by indirect method is
asymptotically zero.
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Fig. 3(a). Magnitude bispectrum estimates for "long data®
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Fig. 4. Magnitude bispectrum estimates for Gaussain noise

M=100
K Mean value Variance
10 112778 0.50238
100 0.46408 0.06241
1000 0.14379 0.00591

Tab. 1. Mean values and variance of Gaussian signal bispectrum
magnitude.

9. Conclusion

In this paper, basic terms of the HOS theory as
moments and cumulants of random variables and stationary
random processes as well as definitions of cumulant and
moment spectra have been introduced. The possibilities of
polyspectral analysis especially bispectral analysis to
resolve harmonic components for “ long data“ and “short
data* in the bispectrum domain have been illustrated by
using conveniently selected example.
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