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Abstract

The presented submission describes how genetic
algorithms can be applied to the control of adaptive
antennas. The proposed optimization method is easily
implementable on one hand, but relatively slowly
converging and depending on the parameters of the
genetic algorithms on the other hand. The disadvan-
tages as well as some possible improvements are
discussed in this paper.
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1. Introduction

In today’s society, radio communications play an im-
portant role: they are used in TV and radio broadcasting,
mobile telephony, satellite communications and in other
applications without which the today’s civilisation cannot
exist. Radio communications are based on the propagation
of electromagnetic waves in free space which enable cove-
rage of large areas by the signal on one hand but which are
unfortunately subject to environmental perturbation such as
atmospheric interference or jamming on the other hand.

Antennas are impdrtant components of radio commu-
nication systems since the way, energy is collected from
and distributed into the environment has great influence on
the effective use of spectrum, and also on the quality of

services provided by radio communication systems inclu-
ding these antennas.

Beamforming is a subject of considerable interest. It is
used in antenna systems to attenuate interferences which
come from different directions than the desired signal.
Adaptive beamforming is particularly attractive since it
permits radio communication systems to respond to a time-
varying environment. ’

There are numerous applications of adaptive antennas:
they are used in radars to preserve a very weak signal
reflected from a target for strong interferences, they are
explored in radio communications to enable decreasing the
power of transmitters due to the elimination of interferences
by the antenna, they are applied in satellite as well as
mobile communications to track main lobes of antennas in
order to keep-main lobe axes of transmitting and receiving
antennas in the same direction, etc.

An adaptive antenna is a system which automatically
sets minims of its directivity pattern to directions from
which the most powerful interferences come. While retai-
ning desired signal beam characteristics, it can reduce si-
delobe levels in the directions of interferences and steer
nulls in real time. Such systems usually consist of an array
of antenna elements and an adaptive processor adjusting its
weights in real time according to a selected control al-
gorithm in order to maximize the output signal-to-interfe-
rence ratio (SIR).

In the open literature, an emphasis has been put on
control of adaptive antennas using gradient algorithms yet,
e.g. Least Mean Squares [1], Linear Random Search [2],
Recursive Least Squares [3], Kalman Filter [4], Simplified
Kalman Filter [S] etc. This is given by the fact that these
algorithms are rather simple to implement on one hand and
they exhibit relatively good adaptation properties (high rate
of convergence, low misadjustment, relatively good
stability, etc.) on the other hand. Unfortunately, these
algorithms are unable to handle with correlated signals if
special de-correlation techniques are not used [6].

In this submission, a control of adaptive antennas,
which is based on the use of genetic algorithms, is deve-
loped in order to find out in which situations they can work
better than gradient algorithms.

In the presented paper, adaptive beamforming using
genetic algorithms is discussed. Section 2 describes the ge-
neral principals of genetic optimization. In section 3, an
application of genetic algorithms to the control of adaptive
antennas is described. In section 4, the results of simula-
tions are discussed.
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2. Genetic Optimization

Genetic algorithms (GA) are global numerical opti-
mization methods which mimic the natural processes of
genetic recombination and evolution [7] - [11]. Such algo-
rithms are particularly efficient to handle with optimization
problems with a large number of unknowns.

Usually, the algorithms encode parameters of an opti-
mized system into binary sequences called genes. All the
parameters of the optimized system are then encapsulated
as sets of genes called chromosomes. :

GA usually use four steps to solve problems [9]:

1. An initial population of chromosomes is randomly ge-
nerated. By this way, the first generation of chromoso-
mes is created.

2. A fitness value is assigned to each chromosome in the
population in order to expressing how well the chromo-
some meets requirements to the optimized system. The

_function which performs the described assignment is
called the cost function or the fitness function.

3. “A new population of chromosomes is generated by se-
lecting the best existing chromosomes and creating new
ones by crossover and mutation which will be explained
later. The phase of creating new generation is usually
referred as mating.

Step 3 is iterated & times. This means that & generations
of chromosomes are created in order to find as good
chromosomes as possible (i.e. chromosomes meeting
the desired parameters of the optimized system as much
as possible are searched).

4. The result of the genetic optimization is obtained as the
best chromosome at the k™ iteration.

Contents of the steps 1, 2, and 4 are obvious but the
step 3 has to be explained. Let’s start with mating.

Mating consists of a phase of selection and a phase of
creation.

Dealing with the first phase, there are many selection
techniques [9]. Here, the most popular ones are described:

Proportionate selection (or roulette-wheel selection)
chooses chromosomes according to a probability of
selection depending on the fitness of the chromosomes
(i =fi 1 Z, f, where f; and p; are respectively the fitness and
the probability of selection of the individual ).

Ranking selection (or population decimation) evalu-
ates chromosomes according to their fitness value and only
the best fifty percents of them are kept. This is the simpliest
selection technique.

Tournament selection is characterized by choosing N
chromosomes from the initial population and by selecting
the most fit chromosome in the sub-population (all of the
sub-population chromosomes are replaced into the po-
pulation and the process is repeated).

Elitist strategy is based on testing the best individuals

‘of a new generation whether their fitness is higher than in

the previous generation. In the opposite, the best individu-

. als from the previous generation are copied to the new one.

Thus, unacéeptable individuals are discarded, leaving
a superior species-subset of the original list.

Dealing with the phase of creation, a so called cross-
over is based on the recombination of two parent’s chro-
mosomes which yields two new child’s chromosomes (or
offspring). Parents can be paired randomly or in another
way (a lot of strategies were so far developed). Parents are
chosen from the chromosomes which remain in the popu-
lation after selection. Once paired, a random cut site, defi-
ning where the chromosome is broken, is chosen for the
couple of chromosomes. Finally, the exchange of genetic
material is performed.

Dealing with mutation, this is a random alteration of
some chromosomes of the population - one or more bits of
chromosomes of the population are changed. Typically, the
probability of mutation for a chromosome is between 1%
and 10%. Mutation prevents the algorithm from getting
stuck in a local extreme.

Now, let’s try to apply the above described principles
of the genetic optimization to the control of adaptive an-
tennas.

3. Genetic Control of Adaptive
Antennas

In this chapter, a linear adaptive antenna array con-
sisting of N omni-directional elements, which are half-
wavelength-spaced, is assumed. Each antenna element is
completed by a complex weight implemented by a Finite
Impulse Response (FIR) filter (Fig.3.1). The FIR filter
consists of a tapped delay line connected to a processor
which adjusts gains (also called FIR’s weights) of the sig-
nals derived from the delay line and sums them to obtain an
output signal. GA’s role is to find FIR’s weights in order to
maximize SIR at the antenna output.

\tj-th antenna element

z
bym

Fig. 3.1 An antenna element completed by an adjustable
: broad-band complex weight

The complex weights permit to modify the phase and
the magnitude of broad-band signals at the outputs of the
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antenna elements in order to control input currents, and
consequently, directivity pattern of the antenna system. If

the adaptive array consists of N elements then the output

signal can be expressed by the equation [4]
wn)y=W'n) X(n) (3.1)

where y(n) is the sample of the signal at the antenna output,
W(n) is the column vector of FIR’s weights of all the
antenna elements WT(n) = [wy(n), wya(n), ..., wim(n), ...,
wnm(m)], and X'(n) is the column vector of signals at the
delay lines’ taps of FIRs of all the antenna elements X"(r)
equals [x;,(n), x,2(n), ..., X3 m(n), xym(n)] and T denotes
transpose.

Our adaptive antenna system is based on the method
of the pilot signal which was developed in the late sixties
by B. Widrow [1]. The pilot signal d(n) is a deterministic
signal which is synchronously generated both in the trans-
mitter and in the receiver. The adaptive change of the
weighting vector W is asked then to enforce the signal at
the antenna output y(») to meet the desired one d(»).

Complex weights, by which antenna elements of the
receiving antenna are completed, are calculated so that the
mean squared error (mean value of the squared difference
between the pilot signal and the output one) is minimized.
Minimizing error signal means minimizing power of in-
terferences in the output signal (in the ideal case, the output
signal consists of the pilot only and all the interferences are
suppressed). This can be interpreted as setting minima of
the directivity pattern to the directions from which the most
powerful interferences come [1]. Therefore, interferences
can be rejected or at least attenuated.

The pilot signal system was used here as the simplest
approach to the control of adaptive antennas. The minimum
of the mean squared error was searched in an iterative way
by LMS algorithm serving here as a reference and by
genetic optimization techniques.

Concentrating on the genetic optimization, every
adaptive antenna is described by a chromosome consisting
of N.M genes (FIRs’ weights which can be changed during
the optimization process) where N is the number of antenna
elements and M is the number of FIRs’ weights per antenna
element. Our cost function computes for each chromosome
the mean squared error on T samples of the signal (7T is
another parameter of our program). The ranking selection
method was chosen as a selection technique. And
chromosomes were paired in an easy way: the best one with
the second best one and so on.

We implemented a first version of GA using binary
encoding and decoding of parameters (conventional way of
implementing GAs). Then since binary encoding and de-
coding of parameters were time consuming, we decided to
implement a genetic version working directly on real
weights {8]. In this version, real weights are genes of our
GA and sets of M.N genes are chromosomes. The use of
real weights also allows the use of a much simpler cross-
over function. Indeed, a child’s chromosome can then be

obtained from additions and subtractions of parent’s chro-
mosomes (and then there is no need to choose a random
cross-over point to perform partial exchange of genetic
material). Cross-over function is important since it is im-
portant for children to inherit good features from their
parents. So, as it is suggested in [8], in this genetic algo-
rithm, from two parents 4 and B, the three following
children were produced: C, = (4+B)/2 which is the average
of 4 and B, C; = (34-B)/2 and C; = (3B-A)/2 which are two
extrapolation points of C;.

Let’s recapitulate parameters of our program:

- Simulation of an antenna array is described by number of
antenna elements N, by order of FIR filters M, by para-
meters of desired signal and interferences (mean, varian-
ce, direction of arrival), by sampling frequency f; and by
number of samples T for the estimation of statistical pa-
rameters of signals (ergodicity of signals is assumed).

- GA is described by the size of the population, by number
of bits per gene, by number of iterations and by mutation
probability.

In the next section of the paper, results of the simula-
tion of the described genetic control of adaptive antennas
are presented. ‘

4. Results of Simulations

4.1 Narrow-Band Systems

Assume that both the interferences and the desired
signal consist of only one harmonic. Computer simulations
of a five-element antenna array (omni-directional elements
spaced the half wavelength) with a two-tap FIR filter at the
output of each antenna element were performed. Four in-
terferences were simulated. The desired signal came from
the main lobe direction with the amplitude S = 0.01 mV,
The interferences came from 6, = -70°, & = -17°, 6 equals
+17° and &, = 80°. All the interferences had the same
amplitude R =10 mV.

Using binary encoding of parameters, the adaptation
process was observed during 500 iteration cycles (mutation
probability=5%). The simulation was executed twice. We
chose here a time vector consisting of 7= 51 samples.

As shown in Fig. 4.2 and Fig. 4.4, the genetic algo-
rithm is converging,-but even after 500 iterations, the mean
squared error is still quite high. In term of speed of
convergence, a mutation probability of 5 % seems to be
optimal here. We didn’t raise the number of iterations (i.e.
number of generations) since, first, it is time-consuming,
and second, attenuations were already set in the right di-
rections (8, =-70°, & = -17°, 6 =+17°, 6, = 80°) as shown
in Fig. 4.1 and Fig. 4.3.
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Fig. 4.1 Directivity pattern of the narrow-band non-adapted

antenna (dotted) and the genetically optimized antenna (solid)
after 500 iteration steps (first execution).
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Fig. 4.2 Time course of the mean squared error of the narrow-

band genetically optimized adaptive antenna in the described
interference environment (first execution).
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Fig. 4.3 Directivity pattern of the narrow-band non-adapted
antenna (dotted) and the.genetically optimized antenna (sohd)
after 500 iteration steps (second execution).

Two executions of the same program under the same
conditions show that results of GA are sometimes worse
(Fig. 4.1 and Fig. 4.2), and sometimes better (Fig. 4.3 and
Fig. 4.4). Raising the amplitude of one of the interferences

in a factor less than 10 doesn’t seem to influence the GA. In
particular, the strongest attenuation doesn’t correspond to
the most powerful interference. If one of the interference is
at least ten times stronger than the other interferences, the
algorithm attenuates it in priority sometimes without
attenuating at all the other interferences.
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Fig. 4.4  Time course of the mean squared error of the narrow-
band genetically optimized adaptive antenna in the described
interference environment (second execution).

In the next simulation, both the antenna system and
the electromagnetic environment stayed the same but
adaptation process was performed by a GA without binary
encoding of parameters. The adaptation process was ob-
served during only 300 iteration cycles (mutation probabi-
lity = 10%) :

’r In( F/Fmax)
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Fig. 4.5 Directivity - pattern of the narrow-band non-adapted

antenna  (dotted) and the antenna genetically optimized
without binary encoding (solid) after 300 iteration steps.

The average error between the desired signal and the
control system output can be computed using the relation

(4.1)

where resultat(K) contains the mean squared error of the
signal at the step K, and size(?) is the number of samples on
which the mean squared error is computed. In this ex-
periment (Fig. 4.5 and Fig. 4.6), err = 0.0032 for an amp-
litude of the desired signal of 0.01 mV. It confirms the fact
that the error is converging toward zero. Raise the number

err= J resultat(K)/size(t)
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of generations is useless since attenuations are already set
in the right directions as it is shown in Fig. 4.5. In this ex-
periment, we raised the mutation probability from 5 to 10%
in order to increase the speed of the algorithm. A mutation
probability of 10 % seems to be optimal in the conditions of
last experiment. We also chose here a time vector
consisting of 51 samples. So the mean squared error is
computed over 51 points. It is a trade-off between results
and speed of the algorithm. :

ting err/tmv) [
4

-2

-4

-6

0 50 100 150 200 250 iter.

Fig. 4.6 Time course of the mean squared error of the narrow-
band adaptive antenna genetically optimized without binary
encoding in the described interference environment.

Now, the following conclusions can be drawn:

1. The GA is well minimizing the mean squared error
causing attenuations in the directions of interferences.

2. The GA without binary encoding and decoding of para-
meters is quicker because avoiding encoding and deco-
ding procedures saves CPU time and because using real
genes allows the use of a simpler cross-over function.
This method very well suits to real time adaptation in
our simple case.

3. The GA is a resistant search algorithm able to handle as
many interferences as it should (N-1 for a N element
antenna array) provided that the number of generations
is big enough. One can fear that raising the number of
antenna elements as well as the number of interferences
increase computational time in such a way that it would
be difficult to perform adaptation in real time. On the
other hand processors are getting quicker and quicker,
making the GAs, algorithms of the future.

4.2 Broad-Band Systems

In broad-band systems, both the interferences and the
desired signals are supposed being white noises. In this
case, a two tap FIR filter is replaced by a M-tap FIR filter
with M>2. In the conditions of our experiments, best results
were obtained from M = 4 against M = 15 for a system
adapted with a LMS algorithm. Computer simulations using
a five-element antenna array were carried out. Desired
signal (white noise, variance 6.45) coming from 8= 0° and
two interferences, first one (white noise, variance 6.45.10°)

coming from 6= 90° and the second one (white noise,
variance 1.61.10%) coming from 8= 60° were used. Both

the interferences and the desired signal were white between
/i=100kHz and f£;=500kHz.

Dealing with the simulation, 2000 iteration steps were
performed with a.mutation probability - set to 5%, with err
= 0.0142. The leaming curve corresponding with the
described situation is depicted in Fig. 4.7.

T.In( en/imv) |7

0 500 1000 1500 iter.
—

Fig. 4.7 Time course of the mean squared error of the broad-
band genetically optimized adaptive antenna.

As the mean squared error is converging toward zero
(mean squared error=0.0126 at the last iteration), it can be
concluded that both interferences are attenuated.

Comparing GA to LMS, the convergence of the GA is
slower.. Even more, good convergence of GA is conditioned
by choosing a good initial condition and a smaller search
space. '

From our experiments, GA seems to suit to adaptive
beamforming of broad-band signals. But the complexity of
real-life systems will probably lead to heavy computational
loads making the algorithm unliveable for real-time adap-
tation. Therefore, the results of our simulations should be

- confronted to real life experiments.

5. Conclusions

The presented paper describes genetic beamforming
of antenna arrays. As control algorithms, the genetic algo-
rithms with binary encoding of genes and without it were
chosen. '

The genetic algorithms were used for the control of
adaptive antenna arrays based on the pilot signal system
which was chosen for the presented development for rea-
sons of simplicity. The pilot signal control was used in
conjunction with a linear five-element half-wavelength-
spaced antenna array to which up to four interferences co-
ming in different directions and presenting different amp-
litudes and phases were allowed to fall.
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In narrow-band systems, properties of the GA and
LMS algorithms are quite the same in simple cases (e.g., a
five-element antenna array subject to only one interferen-
ce). Unfortunately, performance of some more comparisons
in a noisier environment was impossible to carry out, due to
a problem of correlation of signals appearing when
applying an LMS algorithm to the control of our antenna
system.

Dealing with broadband systems, the properties of GA
and LMS algorithms are not equivalent neither. Indeed, the
LMS is quicker but requires a high FIR filter order whereas
the GA performs comparable results in more time but
requires a much lower FIR filter order.

In our work, we implemented a genetic algorithm for
the above described specific application in Matlab 5.1. The
genetic control turned out to be capable to reject all inter-
ferences in a simple narrow and broad-band system. The
principal GA operators (selection, cross-over and mutation)
were discussed as well as their role in the resolution of the
optimization problem. We notably showed their influence
on the speed of the algorithm which leads us to elaborate a
non conventional GA without binary encoding and
decoding of parameters which was already applied to
sidelobe reduction in array pattern synthesis [8].

In conclusion, the robustness of genetic algorithms has
been shown, at least in our specific application. Their
properties allow them to handle a large number of parame-
ters which make them very useful in the electromagnetic
field. In particular, they make them suitable to adaptive
beamforming. When the environment is getting more com-
plex, the LMS is not capable to provide an exploitable re-
sult. This shows that genetic algorithms are much less sen-
sitive than LMS algorithms to correlation of incoming sig-
nals. Yet, genetic algorithms also have their drawbacks:
they are time consuming and the question of real-time
adaptation will probably appear in the much more complex
real-life systems. Yet, since processors are getting quicker
and quicker, properties of genetic algorithms allow us to
think them as algorithms of our future.
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