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é Abstract )

Switching sequential circuits are an indispensable
part of many modern electronic devices, such as
memory cells, flip-flop sensors, and many others.
Since the invention of flip-flop switching circuits, the
study of their dynamic behaviour has played an ever-
increasing role. The dynamic properties of sequential
circuits can be investigated by means of switching
between the system's attractors. In this paper the
boundary surfaces are discussed that play a crucial
role in the process of switching.
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1. Introduction

The conference paper [4] about the multiple-valued
memory using resonant tunneling diode (RTD) pair was
the first work, which stimulated our research
corresponding to circuits with negative load. The first
information on their unique dynamic properties appeared
as an internal announcement [1] and then as a paper in
conference proceedings [3]. The exact dynamic properties
of sequential circuits can be investigated by means of
switching between the system’s attractors. In this paper the
morphology of boundary surfaces is discussed that play a
crucial role in the process of switching. Multipeak
resonant tunneling diode (RTD) properties caused our
interest in these subjects. Resonant tunneling was found to
be very promising in- the design of new functional devices
[7]. Practical circuits using a pair of multipeak RTD's
yield the best result from the standpoint of size, power
dissipation, and speed.

It is known that use of multivalued logic circuits can
provide more information for each signal line, and reduce
the number of interconnections within a chip or between
chips [6]. For this system, it is desirable to have a high-
density and high-speed multivalued static random-access
memory (SRAM) to perform the function of storage. To
increase the density of the memory, one way is to shrink
the size of the memory cell itself, and the other approach
is to implement a multistate memory cell. In this paper, a
non-linear bias method is proposed to increase the number
of states of multivalued memory cell.

The results in announcements [1}, [2], and [3] were
very interesting from mathematical point of view as well.
Based upon these works we have derived new formulation
of the conclusions, which were introduced in [9], [10], and
[11]. They remain true only with respect to the positive
load, so they are not general properties. The eigenvalues of
the Jacobian matrix at the saddle equilibrium point have
the property that exactly one of the mutually different
eigenvalues of the Jacobian is real and positive. It is
interesting to note that this eigenvalue property is shared
by all sequential dynamic systems with linear load. Up to
now, nobody tried to make the rigorous mathematical
proof of this empirical postulate, although it should be of
considerable interest in other fields also [18].

In the case when the device with negative resistance
region is connected as a load for the active device, the
eigenvalues at the saddle equilibrium point need not have
the previously mentioned eigenvalue  property.
Consequently, it was not possible to find out the shape of
the boundary surfaces, since their corresponding
eigenspace, associated with the saddle equilibrium point,
cannot be geometrically represented as it was first pointed
out with respect to the positive load in [8]. The computer
simulations, which detected the shape of the boundary
surfaces, were first pointed out in conference paper [3].
Because in this case the boundary surface is like two-
paraboloids in shape, the boundary surface element is the
tangential plane in mutual point of these two paraboloids.
That is the case to be outlined later. :

While in the case of the positive load, the boundary
surface element corresponds only to one real positive
eigenvalue, in the case of the negative load, the boundary
surface element corresponds to the dominant eigenvalue of
the Jacobian matrix at the saddle equilibrium point [2].

Just as interesting are findings corresponding to
the unstable limit cycle for negative load, which in this
case is totally unstable. It means the unstable limit cycle is
not an attractor for any initial conditions, so it is not
saddle-type as in the case of positive load. The saddle-type
unstable limit cycle in the case of positive load was
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published for the first time in work [13] and later in paper
9.

The algorithm for calculation and delineation of
boundary surfaces was published in {12}, [13], [14], [15],
and [16] in detail. The application of boundary surfaces for
determination of the critical trigger pulse width were
pointed out first in reference [15]. Papers [12], and [17]
confirm the good agreement of experimental results with
simulations on the computer of the response of the
memory cell after introducing the trigger pulse.

2. Preliminary considerations

Let us consider an equivalent circuit of the memory
cell, as shown in Fig. /. We adopt the notation where the
symbols for electrical quantities i, u, correspond to a non-

linear active element possessing a negative resistance
region while i, u, represent a non-linear and negative

load. By the symbol Al in Fig.l and in system (1) is
defined the ideal current source by means of which the
triggering is controlled. The characteristics of the active
and the load device are in Fig.2 where k= and k=2
represent the load and active device, respectively.

Fig.1 Model of the memory cell

The state space model of the circuit in Fig.l is then
given by the system

L %] = -Ri  —(u+u,) =Q
du, . _

Cl Tit_ =1 |(u|) "Qz (1)
(duZ ; i

C, - i —f,l0,) +41 =@,

where the characteristic of the non-linear element fk(uk) is
defined [20] by the expression

fw)= %(kgo-#g: )‘k +% [(kgl_kgoxuk"‘kull +
(kgl—kgl ]uf ol U2| +(kga_kgz)u»—k UJ|]— 2

(s~ fu, +{e,~48 YU, 5,8, }U]

1
2

while kgi are the conductances and kUi are the break points

corresponding to segments of the characteristics as shown
in Fig.2. The I-V characteristic f(u) for the active and

load devices and for the case when R=0 (Fig./) are drawn
in Fig.6. The number of equilibria is defined by the right-
hand sides of the Eq.(1) and the locations of the equilibria
(co-ordinates, sce Table 1) are given by the system of
algebraic equations

0,=0, 0,=0, Q =0, €)

The corresponding memory cell (Fig.l) has five -
equilibria, three of which are sinks: SI, S2, $3. The
remaining two equilibria NI and N2 are saddle-type.

The control of the memory cell by means of the
rectangular pulse with amplitude Al can be clarified as in
references [9], [12] and [17].

by

0 U,
Fig. 2 Piecewise-linear approximation of the characteristics of the non-
linear elements of the Fig.1

In the sequential circuits investigated so far
sequentiality was a sufficient condition for the existence of
a boundary surface. Since in our case there exist attractors
for sinks S/, S2, §3, and limit cycles Li, L2, L3 (Fig. 3
and Fig. 4), the existence of a boundary, corresponding to
the saddle equilibrium points NI and N2 is necessary if the
existence and uniqueness of solutions of the system (1) are
assumed. As the property of being sequential is shared by
all memory cells, their dynamic properties can be
investigated with the aid of boundary surface, regardless of
whether they represent a binary or multi-valued logic. Of
particular interest to us will be sets that separate attractors
in the state space from each other.

On the basis of the introduced boundary surfaces it is
possible to decide about the impulse magnitude and its
duration so that the change of the information content in
the elementary memory may occur.

The Jacobian matrix of the system (1) has the form

R o1 1
L L L
1 ‘.
A= — |2 0 . 4
& (] @
1 g
= 0 13
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The eigenvalues of the matrix A are defined by the
determinant equation

det [A-41=0 | ®)

where A is the matrix (4), A is the eigenvalue of the matrix
A and 1 is the unit matrix. The eigenvalues corresponding
to equilibria defined by the system of algebraic equations
(3) are listed in Table 1.
Linearizing (1) we get
98X _ amx ©)
dt

where A_x=(Au|1Au21Ai)T and E=§_§S s
while x=(u,u,,i)’ and xs; is the vector defining the

coordinates of the equilibrium shown in Table 1.
Similarly the Jacobian matrix

A= )

ox

x=xs

where Q=(0,,0,.0,)"

After linear change of co-ordinates
y =aAx ®

the system (6) becomes

d; —
— =Ay. 9
It y ®

Here A=diag(A,4,,A,), so that particular solutions to
(9) may be written in the form

y(®=nY (10)

where-Y_=(Y,,Yl,Y3)' denotes - the wvector of initial

conditions, and 7 = diag(e™,e*,e™) .

From simulations it follows that the boundary surface
element corresponds to the dominant eigenvalue [2]
(Re{ 4, }=max({Re A, ), i=1,2,3) of the Jacobian matrix at

the saddle equilibrium point which, in view of (10),
corresponds to the plane [8] and [12]

Y, =0, Au +a,Au, +0, Ai=0 (11)

(with the notation o =(a,)).
Our change of co-ordinates (8) yields the matrix equation

gA-Aa=0 12)
the first row of which may be rewritten as
(A-A41)7a:=0 3)

where o, =(@,,,0,,,a,,)" is the eigenvector associated
with the eigenvalue A, of A", and 1 is the unit matrix.

Since a matrix M and its transpose M” have the same
determinants, (13) has unique solution @ with o, =1.

The numerical values of the eigenvectors corresponding to
the unstable equilibrium are shown in Table 1.

Table 1. The numerical values. of the co-ordinates, eigenvalues and
eigenvector for equilibria corresponding to memory cell in Fig.1. The
bias voltage of the memory cell U=440mV; L=1e-10H,C1=C2=5¢-13F,
R=0Q. The parameter values corresponding to active and load
device are as follows: 'gy=0,083; 'g,=-0,057;'g,=0;'gs=0,028;?g,=0.1;

%9,=0,05;  ?g.=0; Zgs=0,03 [S};'U;=60;'U,=130;'U;=280;2U),=50;
2U,=140; 2U4=260 [mV].

Equi | _co-ordinates eigenvector

libri | u u §

um [ml\}] [...‘3; [m'A) a, a.'z an
S1 |385(54 |45 . * *
N1 ] 353{86 | 3,5] 687221125 | -0,787394 1
S2 2751164 | 1 * * *
N2 | o1 {348] 29| 74171348 | -0,9064227 1
S3 ] 43 [1397] 43 * * *
Equi elgenvalues

-] Re(4,,) ()
S1 -123213594624 -53693206528 108004185600
N1 31277887488 9461056512 195646275584
S2 -32840130560 -15579936768 175476146176
N2 25828651008 8985674752 198543147008
S3 -145801281536 -55199363072 93755670528

We apply the technique of graphical representation,
,via computer simulation, to explore the morphology of
basins of attraction for the asymptotically stable states and
the associated boundary surfaces. It is the latter that will
concern us in this paper.

The basis for calculating and delineating boundary
surface relative to non-linear load were papers [7], and [8].

3. Computer simulation results

The different techniques of computation and
graphical representation of the boundary surfaces were
outlined in papers [9], [10], {11] and [17]. Among the
various numerical techniques of digital simulation we use
the grid technique of basin delineation. This method does
not require special knowledge but it demands the most of
the computer time.

For example, we assume that the chosen grid is
projected onto the (u » 4,)-plane (as shown in Fig. 3 and

Fig. 4) for the cross section at level i, equal to the co-
ordinate of the unstable equilibrium NI and N2,
respectively. To each sink corresponds a region, called the
basin of attraction, of all points attracted toward the sink.
The different colour areas represent the cross-section of -
these regions. The basin of attraction for sinks S/, S2, S3,
and limit cycles L1, L2, L3 are delineated in Fig. 3 and
Fig. 4 represented by the green, grey, red, yellow, pink and
blue area respectively. For the given cross section (at
i=constant ot u=constant depending on the projection)
these domains allow to decide what equilibrium state
reaches the representative point of the trajectory after the
pulse has been cancelled (Fig.5). Memory cell control is
thoroughly described in Ref. [9], [11], [12], and [15] and
here we shall only touch upon some aspects.
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-13.2

110 -

0 110 220

Fig. 3 Monge's projection of the cross-section (in singularity N7) of
the boundary surfaces and stable limit cycles and unstable
limit cycle.

330 u2 [mV]

Only the cases for the sequential circuits that have
exactly one real positive eigenvalue of Jacobian A
belonging to a saddle point have been published in papers
[9], [10], [11], and [12]. This eigenvalue property is
satisfied also for the four-dimensional state space
published in [17]. Therefore the authors [17] suggested
that this eigenvalue property for saddle points is shared by
all sequential dynamical systems also in higher-
dimensional state space. These conclusions were also
based upon geometric delineation of boundary surfaces.

The case outlined here for geometric interpretation of
the boundary surface is very interesting because saddle
points N/ and N2 have all real positive eigenvalues. To
this case corresponds also a very unusual shape of the
boundary surfaces. This will be described for clarity only
qualitatively and not exactly in Figures 3, 4, 5 and 6.

-13.2

220 4=

110 ==

0 110 220 330 u2 [mV]

Fig. 4 Monge's projection of the cross-section (in singularity N7)
of the boundary surfaces and stable limit cycles and
unstable limit cycle.

The boundary surfaces corresponding to saddle point
N1 and N2 are like two-paraboloids in shape. The cross-
section for N1 and N2 is depicted as the border between
the green<>yellow<>grey colour and between the
grey «<>blue <>red colour, respectively. Their common
points are equilibria N/ and N2. The graphical
representation of the cross-section of tangential planes
EGI1 and EG2 with the corresponding plane are shown in
Fig.3 and Fig. 4, respectively. In Fig.6 are depicted both
tangential planes £GJ and EG2.

The singularity S is inside the green area, point S2
is inside the grey area and point S3 is inside the red area.
In addition to the three above mentioned equilibrium states
there are additional stable limit cycles L/, L2, L3 and one
unstable limit cycles LN (see Fig.3 and Fig.4). It separates
the state space (i, u o) into six
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Fig. 5 Monge's projection of the cross-section of the boundary
surfaces and the trajectories with initial conditions:
Ptl(i=44mA, u,=352mV,u,=1mV), P2(i=0,6mA,
u,=200mV, u,=325mV), P3(i=024mA, u,=80mV,
u, = 380 mv).

domains of attraction. There is only one attractor
(singularity SI, S2, 53 or limit cycles LI, L2 and L3) in
each domain. Hence the initial conditions chosen in the
particular domain lead to the corresponding attractor as
shown in Fig.5.

Monge's projection of the state space represents the
exact solution of the system (1) with parameters, which are
given in the text for Table I. The cross-section
corresponds to the singularities NI and N2, i. e. in
projection onto the (u,u )-plane the cross-section of the

boundary surfaces are at level "} and mi, in the projection

-13.2

-22

Fig. 6 The cross-section of the attractors, for corresponding
stable states at u, = U - u, and projection onto (i, u, V2) -
plane. The different colour areas represent the domains of
attraction for sinks and limit cycles. Depicted are both
tangential planes EG7, EG2 and unstable limit cycles LN
as well.

onto the (i,u z)-plane the cross-section correspond to level

"u 1 and “u 1, Tespectively.

According to the above, the initial points P/, P2 and
P3, (see Fig.5) lead to the singularity S/, S2 and S3,
respectively. Marked, as circles with dot inside (resp.
circles with cross) are the intersection points of the
trajectory with the corresponding cross-section plane.

4. Conclusion

The suggestion for this contribution was [4] and
additional papers dealing with multiple valued logic,
which relate to them. In the case when the device with
negative resistance region is connected as a load for the
active device, the eigenvalues of the Jacobian matrix A (4)
at the saddle equilibrium point need not have exactly one -
real positive eigenvalue. The case outlined here is very
interesting because saddle points have only real positive
eigenvalues. The boundary surface exists while it has very
strange shape from the geometrical viewpoint. It can be
expected that the approach presented here will be
applicable in multiple valued logic.
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