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Abstract

Two new modified types of canonical state models
simulating  chaotic phenomena in  piecewise-linear
dynamical systems are derived. Both are topologically con-
Jjugate to Class C similarly as Chua's circuit family. Their
state matrix equations and corresponding integrator-based
cireuit models are proposed including their relations with
the first elementary canonical state model. As an example
\the phase portraits of typical chaotic attractor are shown
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- 1. Introduction

Third-order piecewise-linear (PWL) dynamical systems
belonging to Class C of vector fields in %° [1] can be
described by the matrix state equation

x =Ax +bh(w'x) 6y
(A e R, b e R, w e ®*) where PWL function
h(wa)=%(|wa +1|-—|wrx-1l) @
is continuous, odd-symmetric and partitioning %> by two
parallel planes into the inner (origin) region and two outer
regions (Fig. 1). The dynamical behaviour of such systems
is determined by two sets of eigen values representing
two characteristic polynomials associated with the
corresponding regions {1}, i.e.
Do : P(s)=det(s1-Ag)=(s~pm )S—u2)($—u3) =
=s-pySa+pas-ps €)]
D.D_g: Q(s)=det(s1-A)=(s —vy }(S=-vz (S~v3)=
=8%-q,5;+q25-q3 )]

where Ag=A+bw’ and 1 is the unity matrix.

Any two systems having the same eigenvalues are
qualitatively equivalent and their mutual relations can be
expressed by the linear topological conjugacy conditions [2]

X=Tx, A=TAT', b=T (5a,b,c)

where o T=KTK (5d)
Variables X and X, state matrices A and ‘A, vectors
b,W and b,w belong to the first and second systems,

respectively. Partial transformation matrices K and K are
defined by the nonsingular form [2]

wT 1w’
k=| WTA and k=| wA (6a,b)
W A2 w’A?

fulfilling the observability condition of pairs (A,Ww’) and

(A, w’ ), respecnvely

So called Chua’s circuit family (e.g. Chua s canonical
circuit, Chua’s oscillator, etc.) represent dynamical

~ systems which are canonical in the sense of the minimum

of free parameters needed for their design [1]. Their
elementary forms have quite simple relations between the
network parameters and the corresponding equivalent
eigenvalue parameters, i.e. the coefficients of two
characteristic polynomials [3]. Many other state models
can be derived using the linear topological conjugacy to
utilize them for the study of various chaotic phenomena
including the synchronization [4],[6]. The new proposed
canonical models are based on the decomposition of the
state matrix A into the block-diagonal {7] and block
triangular forms, i.e. generally

(847 a2 | ©
I-A, 0] 1" 12
Y =|81 &2 [+] (73)
Lo exn] |———
| 0 0 |aa;
. Al A 841 842 843
and A= =831 82 [823 |, (7o)
0 833 e s
| O 0 |az;

respectively. Their global design procedure and relation to
the chosen simple reference system is described more in
detail in the following part.

h(w'x)

P IS .

-1

Fig. 1. Simple PWL feedback function
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2. General Design Procedure

When substituting general forms of staté matrix A
from eqn (7a) or (7b) to eqn (4) and comparing the
individual polynomial coefficients q,,q,,q, the following
conditions are obtained for both models:

841 +8 = V1 +V2 5 (8a)
811822 - 821812 = VqV2 , (8b)
(a33)° -q4(833)? +92(833)-q3 =0 (8¢c)

Let wv;=v'tjv" denote the complex conjugate
eigenvalues and v, the real eigenvalue in outer regions
D+,,D_;. It follows directly from eqn (8c) that in both
cases &g =v; while conditions (8a,b) can evidently be

fulfilled by various ways. The following two types of the
second-order submatrix A' are considered in both models:

g vi+vy -1 v
A' = i and A' =
vy Vo 0| v'
i.e. the elementary canonical and the complex decomposed
forms, respectively.

For the comparison the first elementary canonical
form [3] is used as the simple reference system where

'] 0ab)

(-1 0  [p-a] y
A=l o -1},, 5=[Pz"qz (102,b)
|95 0 0 P =93]
1] 1 0 o]
w=|o|» K'={qs -1 0 (10c,d)
o] 92 -41 1]

so that the state equations (1) can be rewritten into the
complete and modified form as

CXq = qqlxg = h(x)] - X2 +p1h(x1) s

(123)
X2 = q2[X1 = h(x9)] - X3 +p2h(x1) s (12b)
X3 =q3lxq = h(x)] + p3h(xq) (12¢)

(The corresponding integrator-based circuit structure is
introduced in Fig, 2.

: PWL
P p P
é__ . A 5 o ) 1
-1 | )
9 9, % )
+1
At
Ay

Fig. 2. Integrator-based model of the first elementary canonical form
of the third-order dynamical system

Starting from the chosen type of submatrix A’
complete state matrix A can easily be derived. Choosing
vector w in accordance with [7] in the form
wi=[1 0 1] partial transformation matrix of the new

system K is obtained from eqn (6b) and resultant

 transformation matrix T from eqn (5d). Then vector b is

| determined using condition (5c) as

b=[by b, b] =T 13)

where b is given by (10b). Finally the corresponding

integrator-based circuit models can be derived. The main
results are summarized in the next parts.

3. Canonical State Models with
a Block-Diagonal State Matrix

3.1 Elementary Canonical Submatrix

State matrix and vectors in eqn (1) are given as

wtve =110 1 by
A={ ww, 00|, w=lo|, baln,| (14abe)
0 0w 1 by '
where By=py-qi-by , (15a)
by = Pg — Gz - vaby —(vy +va)by ,  (15b)
by = (3 (va—m)vs— i) (150)

~va) (va-w)(vz-wv2)

and Pr=(m+m+m), q=(v+n+n),
P2=phip+ (i + 1), qa=vva+va(vi+v)

Then the complete state equations can be rewritten as

%y =(v; +va)Xq =Xz +bih(xq +x3) , (163)
Xg = vqva X4 +bah (X4 +x3) , (16b)
X3 =V3X3 +b3h(X1+X3) (16C)

and the correspondmg integrator-based circuit model is
introduced in Fig. 3a. The partial and resultant
transformation matrices have the form

1 0 1 1. 0 1
K= w+ 1 -1 | Ty 1 yin
ey —urw) Wl |0 v oy
N (17a,b)

3.2 Complex Decomposed Submatrix

State matrix and vectors ineqn (1) :

by
, b=ib, (18a.b.c)
by
where by=py-(2v'+v3)~bs , (19a)
bz_[Pz-qz‘-(Vst:')h‘ZV'bsl ) (19b)
(va —mdvs ~ )
b3 =(u3 —v3) vy R 172 (19¢)
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The complete modified state equations are

Xy =v'Xy=v''Xg +bih{xq +X3) , (20a)
Xo =v'"'Xq+V'Xg +by h(Xq4+X3) , (20b)
X3 =v3 X3 +b3 h(xq+x3) (200)

and the corresponding integrator-based circuit model is
shown in Fig,. 3b. The partial and resultant transformation
matrices are

1 0 1
K= v' —-y" va i, (21a)
sz__yuz “2v'v'" v 2
1 0 1
and T={v'+ Vs‘ v" 2v' (21b)
viva vy v 24y"2
Vs
P . X
D I
b .
? - . PWL
h (%,+ %) 51
) »
b, b. :
X, ~ X,
G" b AN H>
,V, v+ V,
a)
Va
N
b, :
PWL +1
h(x+3%,) Oa+x) %
N
+
vl
b: AN H>xa
N N
v <
b, 3 v X
oS> 1
v' .
b)

Fig. 3. Integrator-based circuit structures of the canonical state
models with block-diagonal state matrices. (a) Elementary
canonical submatrix, (b) Complex decomposed submatrix

4. Canonical State Models with a
Block-Triangular State Matrix

4.1 Elementary Canonical Submatrix

State matrix and vectors in eqn (1) are given as

by
, b=|b,| (223bc)
by
where by =(m+m)-(vi+w) , (23a)
by = mup - viva (23b)
by =(u3 -v3) (23¢)
The complete state equations can be rewritten as
Xy = (u+m)lh(xq+x3) ~x3] - x3
vy +va)[h(xy+x3) (x4 +x3)] , (24a)
%2 = mpalh(xy+x3) =x3)]
~vvalh (x4 +x3)=(xy +x3)] , (24b)
X3 =,ush(x,1,+x3)-V3[h{x1+x’3)—x;] (24c)

and the corresponding integrator-based circuit model is
shown in Fig. 4a. The partial and resultant transformation
matrices are '

1 0 1
K=l w4+ -1 w-b (252)
WPty ~(q+n) vl +by +ayby
1 0 1
and Ty, 1 pep (25b)
0 v mu

4.2 Complex Decomposed Submatrix

State matrix and vectors in eqn (1) :

V' - V” —b1 1 b1
A=iv' "b2 s w=|0)» b= Q (26a,b,0)
Vé 1 by
where by =(p+pp ) -2v (27a)
by =LV.:ET§'-_~2_)__V.. ., (@m
by = u3 -y (270
The complete modified state equations are o
X'1 = V'X1 - V"Xz +b1 [h(X1 +X3)-’X3] , (283)
%2=v''Xqg +v'xg +ba [h(x1+x3)-x3] , (28b)
X3= py h(xy+X3)=va[h(x1+x3)~-x3]  (28¢)

and the corresponding integrator-based circuit model is
shown in Fig. 4b. The partial and resultant transformation
matrices are :



Fig. 4. Integrator-based circult structures of the canonical state
" models with block-riangular state matrices. (a) Elementary
canonical submatrix, (b) Complex decomposed submatrix

5. Example

As an example the well known double-scroll
attractor [1] is chosen (related equivalent eigenvalue
parameters: p;=009, py= 043296, py= 065332 and qp=—1168

g,=084634,g3=-1248; i.e. the eigenvalues: y;=-0319+,08%2,
y3=0728 and vy g=-00611 10, vy=0728). For a comparison
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1 . o 1. the phase portraits of three various qualitatively equivalent
' models are shown in Fig, 5.
K| v - vs - by (292) &
v'2oy"2 _2v'y' vg2eby(Vitvg )+bpv”
1 0 1
and T=|vi+yy v utu (29b)
vivg vivy o i
PWL
ﬂ (o) o 1 a)
N
+1
h(x,+%,)
2] ' 1
S—r——0
, )
[ (x+35)-%]
] (* ) " b)
S
- -
~Vive -(V""V,) 2
. ~ 1
106+ 25)-(x,+ 53] a) e
PWL 1
SZ i 05+%) o -1 2
U
+1
hix+x)
©)
Hy +1
o>
/_v U/ - - Fig. 5. Phase portralts of the double-scroll attractor. (a) First canonical
? (P (x+%,)- %] state model (Fig.2), (b) Block-diagonal state matrix with
complex decomposed submatrix (Fig. 3b), (¢) Block-triangutar
state matrix with elementary canonical submatrix (Fig. 4a)
b A T ®
A e .
'y 6. Conclusion
I “ Two new types of the canomical state models
a4 . . . . .
b & DI\ X D topologically conjugate to Chua’s circuit family, both
Y, W S based on the decomposed state matrix forms, are proposed.
thersharsll ) | Al these systems have been verified by numerical

simulations including the applications which exhibit the
synchronization phenomena [6]. Some of them have been
realized using the integrator-based circuit models and also
verified experimentally [51,[8],[9). The theoretical and
experimental results are in a good agreement. In the
further research the modified models simulating various
dynamical phenomena will be derived in order the system
design could be optimized. All the models can evidently be
extended also for higher-order systems {10].
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We apologize to the readers of our journal Radioengineering (April 1999, Vol. 8, No. 1) for a mistake in the -
article ,,Network Communication by Optical Directional Link“ (Otakar WILFERT, Viera BIOLKOVA). In Fig.6
~Monitoring signals received over different weather conditions* on page 40 some parts are missing. The correct version of
the figure is presented below: ‘

Monitoring signal

12 3 4
April 1997 / days
a)

We thank you for your understanding.

Monitoring signal

26 27 28 29 30
April 1997 / days
b)



