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Abstract

The state-space description of digital filters
involves except the relationship between input and
output signals an additional set of state variables. The
state-space structures of digital filters have many
positive properties compared with direct canonical
structures. The main advantage of digital filter
structures developed using state-space technique is a

- smaller sensitivity to quantization effects by fixed-point
implementation. In our presentation, the emphasis is on
the analysis of coefficient quantization and on existence
of zero-input limit cycles in state-space digital filters.
The comparison with direct form II structure is

presented.
_/
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1. Introduction

A lower sensitivity to roundoff effects of state-space
digital filters (SDF) by fixed-point implementation is a
main reason for using special filter structures. In this paper
there are analysed sensitivity to coefficient quantization and
zero-input - limit cycles in the second order digital state-
space filter in comparison to the -second order direct
canonical structure, The existence of limit cycles in
recursive digital filters is the object of interest of some
publications as [1] - [3], [5], [6] etc. For the limit cycles
existence play a deciding role the feed-back coefficients of
a system matrix A, similarly as denominator coefficients
of a system function in the case of canonical direct form II
(CDF). The zero-input limit cycles existing in absolute
stable digital filter due to an accumulation of quantization
errors by multiplying in recursive section of a filter.

In contribution there will be obtained relationships
between coefficients of second-order state and canonical

structures for the same frequency response, This
relationships give a possibility to transform both structures
mutually and to compare their roundoff effects.

2. Digital State-Space Filters

The N-th order single-input/single-output SDF can be
described by two equations, by the state equation and by
the output equation:

un +1] = Au[n]+Bx{n}]

yln] = Cu[n]+Dx[n] O]

where u[n] is the N-dimensional vector of state variables,
x[n] is an input sequence, y[n] is an output sequence and
the state-matrixes A, B, C and D contain the filter
coefficients. The matrix A represents a system matrix of the
dimension N x N. The associated system function H(z) is
given by

H(z)=D+C-(z-1-A)"B @

where 1 is the identity matrix.

2.1 Second order state-space structure

The recursive second-order SDF can be described by
the state matrixes following from the Eq. (1)

ay ayp bl] ,
A= , B = , C =le, ¢, D=d
Lzl azz] [bz [ ! 2]

3

The equations (1) for the second-order SDF can be written
in the form

wln+1| lay ap ||| 1h
l:uz[n+2]]—[azl azz}['lz["]]+[bz]x[n]

o) =[a Q][Zgg

The second-order SDF structure-derived from the state-
equations (4) is shown in Fig. 1a). The common system
function of the second-order CDF is given by

)
]+d.x[n] .

By+ Bz + Bz
1+ Az + 4,272

H(z) = &)
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or equivalently

(B, - ByA;)z™ +(B, - Byd,)z 2
i 0%} 1~ 20%2

H(z) =B, + (-
(2= By 1+ 4,27 + 4,272 ©
The CDF structure is shown in Fig. 1 b).
Xn] o
d
& ¥ yn]

Figure 1: Second-order digital filters a) state-space filter b) direct
form Il

Substituting matrices (3) in the Eq. (2) can imply the
system function H(z) of SDF in the form

alz-l +a22—2
1+ Bz + B 272

where constants & and f are expressed as

H@)=d+ )

o, =bc, +bc,y

0y =bicaay +byc1ayy ~biC1axn ~byciay;  (8)
B =—(a, +ap)=-tr A

By =(anap —apay) =det A

Symbols tr A and det A denote the trace and the

determinant of a system matrix A , respectively.

Comparing H(z) in equations (5) and (7) we get
five equations for the computation of nine state-space filter
coefficients. The next necessary equations follow for
example from the relations for sensitivities of zeros and
poles of transfer function to the filter coefficients, as it was
derived in [4] and (8]. As equations (2) and (6) are
expected to be equal the following equations have to hold
for the system function of the second order

Bo=d

B] =b]C| +b2C2 “det A
Bz = d'detA+b10202‘ +b2c|a|2 -b|C|022 "szZGH (9)
A] = -=Ir A
A2 = det A.
The obtained relations between coefficients of state-

space filter (7) and coefficients of direct canonical structure
(5) are given by the following equations:

A, A}
a =ay ="'2'1', a; =—ay =4, vy
a-de-a
cy =—by = 5 s (10)
C]=b‘="“/a+cz, d=Bo,
where
‘ 2
(ﬁ"l"a'azz)

a=B|“BoA1, ﬁ=Bz-BoA2, €= 2
4a12

3. Finite word-length effects

Digital filter development methods it is assume that
the filter coefficients and signal variables have infinite
precision. However, when implemented in special purpose
hardware form, the system parameters and signal variables
can take only limited word length. This discrete values are
specified by the length of registers provided to store the
coefficients and signal values. Quantization process in
digital filters results in various sources -of errors. Two of
this sources will be mentioned in next paragraphs,
coefficient quantization and quantization of arithmetic
operations.

3.1 Quantization of filter coefficients

When implemented on a digital hardware, the filter
coefficients can assume only certain discrete values. The
poles and zeros of the system function will, in general, be
different from the desired poles and zeros. Therefore, the

actual frequency response may be quite different from the

desired frequency response.

The possibility of realisation of band-pass IIR
digital filter by a cascade structure of second-order SDF
giving a lower sensitivity of the transfer function to
coefficient quantization compared with the second-order
CDF structure, will be now demonstrated. Fig. 2 presents
magnitude responses of an elliptic band-pass four-order
filters for six-bit coefficient length. It is obvious from Fig.
2, that the frequency response of SDF (dotted line) much
better approximates the full precision response (solid line)

- than CDF frequency response (dached line).



Radioengineering
Vol. 8, No. 4, December 1999

Finite Word-Length Effects in Digital State-Space Filters 9
V. DAVIDEK, M. ANTOSOVA, B. PSENICKA

DIGITAL FILTER FREQUENCY RESPONSE
1 — —
o9} .

ELL 6bits | !

!

AMPLITUDE ]
22

FREQUENCY [kHz]

Fig. 2: Frequency responses of four-order band pass DF's
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Fig. 3. SNR for different word length for SDF and CDF structures.

The designed DF’s have been simulated for some
particular coefficient length and for fixed-point arithmetic
using a computer simulation program. As a further measure
of the finite word-length effects the SNR in [dB] has been
used in the following formula

Y il
> (olm -5tm)’

where y[n]is the output sequence of the analysed DF with
particular coefficient length from 6 do 25 bits and y,[n]is

SNR =10 log (11)

the quantized output sequence simulated in the fixed-point
arithmetic using rounding and two’s complement
representation.

3.2 Zero-input Limit Cycles Analysis

In recursive digital filters, the finite precision of fixed-
point arithmetic (e.g., quantization of the _output
of multiplication and/or additions) causes limit cycle
oscillations at the filter output. The period and the
maximum amplitude of limit cycle depends on the filter

coefficients. A second order recursive filter section can
generate a variety of limit cycles if rounding arithmetic is
used at the multiplier outputs.

k,k or k,k (7341)

Fig. 4 Area of limit cycles existence in direct form It DF.

It is known that the linear version of direct form
realisation of a second order digital filter is asymptotically
stable when the coefficients A4; and 4, lie inside the
triangular spaced in region |4;| < I and |4,| < I+4,. Let
quantize booth of coefficients with the step of 0.01. At
the output of CDF structure there are to observe limit
cycles with different amplitude and period. In Fig. 4 is
shown the region of quantized coefficients for which exist
limit cycles with period length L=/ and L=2 with
amplitude of K. The amplitude of limit cycles K is given in
multiples of the quantization step g. The period L=/
corresponds to output sequence {KJK} and L=2 1o
sequence {K,-K} respectively. In Figures 4 and 5 are
illustrated the founded amplitudes of limit cycles. For
combinations of filter coefficients a/ and a2 is the
amplitude of existing limit cycles represented by the scale
of tints between white and black colours. Darker tints of
grey describe an existence of LC with a larger amplitude.
The results of LC analysis is shown in Fig. 4 and 5. It was
found about 73410of zero-input limit cycles of period K,K
or K,-K for CDF and only 2118 limit cycles K,K or K,-K
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for SDF. Another founded LC are presented in next parts
of Fig. 4 and 5.

k,-korkk (2118)
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Fig. 5 Area of limit cycles existence in state-space DF.

4. Conclusion

The state-space DF's are special structures of digital filters
with lower sensitivity to roundoff effects by fixed-point
implementation in comparison to canonical direct form II.
Based on the analysis shown in Figures 2, 4 and 5 we can
make several comments. The SDF's have generally a lower
sensitivity to coefficient quantization in comparison to
CDF's. The probability of occurrence of zero-input limit
cycles by rounding is lower as in the case of direct
canonical form. Unfortunately, if the limit cycle occurs its
amplitude can be higher (two times maximally), compared
to direct form realisation. Digital filters with minimum
norm of system matrix A have asymptotically stable
realisation for overflow oscillations and for magnitude
truncation limit cycles. The disadvantage of SDF's is a
higher number of multipliers, 9 coefficients are necessary
against 5 coefficients of CDF structures.
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