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Abstract

Echo cancellation system used in mobile
communication is analysed. Convergence behaviour
and misadjustment of several Least Mean Squares
(LMS) algorithms are compared. The misadjustment
means errors in filter weight estimation. The resulting
echo suppression for discussed algorithms with
simulated as well as real speech signals is evaluated.
The optional echo cancellation configuration is
suggested.
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1. Introduction and problem definition

Mobile communication systems, especially hands free
telephony suffers from the echo presence. This
contribution is devoted to the use of hands free set in a
running car. We are evaluating system for mobile phone
with one microphone and one loudspeaker. Owing safety
rules the microphone must be placed in a dashboard or
drivers sun visor in a distance from a driver about 30 — 50
cm. This placement of microphone and loudspeaker
creates ,hands free* (HF) mobile phone. Almost the same
distance is usually between loudspeaker and the
microphone. The couple loudspeaker — microphone creates
the acoustic feedback with very high gain. Therefore the
possibility of echo or instabilities (whistles) due to the
existence of this feedback is very high. The basic idea of
the echo suppression is the use of parallel path cancelling
the existing acoustic feedback.

The typical echo cancellation system is shown in Fig. 1.

The frequency response of loudspeaker — microphone
path is time dependent because of possible driver
movements. Therefore as echo canceller an adaptive filter
must be used. The aim of this adaptive filter is to estimate
the instantaneous frequency response of the loudspeaker —
microphone path. If this estimation is precise the far-end
speech r(n) coming from the microphone is perfectly
cancelled. Now, let us discussed the echo canceller in more
details.

For the signal description see the discrete model of
echo canceller in Fig. 2. Let us suppose Linear and Time
Invariant (LTI) model.
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Fig. 2 Discrete model of echo canceller

The microphone output:
d(n) = A, (n) * x(n) + s(n) + noise(n) )

Where * stands for the convolution, and Ac,{n) represents
the acoustic impulse response of the car cabin.
The error signal rising from the summer is given by:

e(n) = Ac, (n) * x(n) +s(n) + noise(n) — A(n) * xg))

Where A(n) is the impulse response of the echo
canceller. The echo is caused by the loudspeaker output
r(n). If r(n) is perfectly cancelled then e(n) contains the
driver’s speech only. It is possible only if the impulse
response of the echo canceller A(n) equals to the impulse
response of the car cabin Ac,(n).

The least mean squares criterion Min{E[e’(n)]} is
very often used as the cost function for the adaptive
algorithm derivation:

Min{e’(n)} = e(n)=s(n)+noise(n) (3

When this criterion is used the family of Least Mean
Square (LMS) algorithms is presupposed for the
implementation.
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Fig. 1 Echo cancellation system
Legend:
x(n) .. speech of far-end speaker
r(t) ... far-end speaker output
noise(t) ... environmental car noise
s(t) ... driver’s speech
d(n) .. digitised microphone signal
e(n) ... error signal

2. Adaptive filter and algorithms
description

As the adaptive filter the Finite Impulse Response
(FIR) transversal filter is used. The filter length must be
equal or greater than the impulse response of the car
cabin. The typical length of the measured impulse
response was between 180 — 250 milliseconds (150-200
samples) [6] depending on the cabin type and the number
of person in the cabin. Its simplicity and stability
influenced this filter choice.
Brief overview of potential algorithms for an echo
cancellation is published in [7].
Several LMS algorithms updating the FIR impulse
response were studied:
- Widrow — Hoff LMS algorithm [1]
- block LMS (BLMS) in time domain
- block LMS in frequency domain using periodic
convolution (FLMSPC) [2]

- block LMS in frequency domain using linear
convolution (FLMS) [3]

- normalised LMS in frequency domain (FNLMS)
[4]

- multidelay normalised LMS in
domain (MDF) [5]

frequency

Individual algorithms vary by construction of input
signal block, by the type of convolution used (linear or
periodic), by the equation for the estimate of gradient and
also by the computing complexity of whole algorithm.

Car cabin

Each of these algorithms can be described by two
equations. First equation is common to all algorithms and
represents the filtration equation:

e(n)=d(n)-y(n) = d(n)-b(n) * x(n) (4)

where B(n) are filter coefficients forming its impulse
response, X(n) = [x(n) x(n—1)... x(1—=No+1)] represents
the vector of input signal, Ny, is filter length.

Second equation explains the coefficients update and
will be presented for each case separately.

1. The LMS algorithm can be specified by the
equation for the coefficients update:
b(n +1) = b(n) + 2pe(n)x(n) )

Where 0<u<1/P, is the convergence factor. P, stands
for the power of signal x(n).

IL. The BLMS is very similar to the LMS algorithm
but instead of the vector ;(n) the matrix of the input
samples x(n) is used (only indexes of vector ;(rl) are

implemented in the matrix structure shown below):
X(NLgioek ) =

Nlgioert+1
I-]'I-Blcu':k

(N+7) Lgiocx
(n+7) g1

NLgjoext2
Nlgioert1

n'LBlock._r% +2 Nlge—N, +3 ... (n+1)LBIt;ck"_N) +1

Where Lgo is the length of one data block forming
one row of matrix x(n). Index n now represents the block
index. The coefficients update:

b(n+1) =b(n) + (24/Lgee) - €)X (6)

The convergence rate of the BLMS is the same as the
convergence rate of the LMS for Lg,4=1, in other cases it
is smaller.



Radioengineering
Vol. 9, No. 1, April 2000

Echo cancellation I: Algorithms simulation 19
M. BRODSKY, P. SOVKA

[11. The FLMSPC and FLMS algorithm are both
based on the use of FFT algorithm for performing the

convolution b(n)"I x(n)in the frequency domain. More

detailed description can be found in [2], [3].

These two algorithms are only effective versions of
the BLMS saving operational costs. Moreover the greater
convergence rate can be achieved as the consequence of
splitting the input signal into many frequency bands.

V. Normalised algorithms FNLMS and MDF use
the normalised convergence factor :

u(k +1) = p(k)/PSD, (k) (7
Where independent variable k represents frequency

domain and PéDx stands for the estimate of power

spectral density of the input signal yielding the signal
power or each frequency band. The result of this
normalisation is the convergence rate independence on the
input signal power. The better convergence behaviour and
smaller misadjustment can be expected. 'The first
simulations and comparison some of these algorithms are
published in [6].

3. Criteria used for comparison of
algorithms

If we know the acoustic properties of the car cabin
(given by Ac,(n)) and final weights of vector b(n) we can
use the criteria of Mean Square Error (MSE):

Nb
MSE =LY (Acu -0 [ ®

Ny o
The precision of the algorithm in the case of concrete
signals we describe by the factor called Echo Return Loss
Enhancement (ERLE). The ERLE factor is defined as a
ratio of powers of the error signal e(n) and the desired
signal d(n). Powers are calculated from segments of 128

samples without overlapping: ,_,

E(e n)}

For the evaluation of the convergence rate the
convergence time teyny [S] is used. tey,y is defined as a time
need for reaching 90% of final value of ERLE after
algorithm convergence (ERLE,).

ERLE =10log [dB] ©)

4. Simulations and results

The initial convergence behaviour of each studied
algorithm is compared in this section. The convergence
time tey,, [S] is evaluated by means of the smoothed ERLE
(second curve in next figures 3-6). The order of analysed
filters is 256, the speech signal with 66.400 samples is
used for testing, sampling rate is 8 kHz. The mean value

ERLEuyeas and the minimal value ERLE,;, representing
the precision are evaluated.

The influence of block length on the BLMS
convergence can be seen in Fig. 3 and Tab, 1.
The t:omergeme ul‘ the BLMS algonlhm
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Fig. 3 Influence of block length (Lawex Shown into brackets)

block length Lo -] [ 256 32] 8 | 2 | 1

ERLEeqy [dB], p=1.10"]-3,7] -9.3] -16, 5] -25,8

-19,1

ERLEjeaq [dB], p=2.107 -1,2] -4,6] -84 | -15,2
Tab. 1 The convergence properties of BLMS

The greater block length causes the higher (worse)
ERLE.

The comparison of time constants and ERLE of all
algorithms are summarised in Tab. 2. Figures 4 — 6
illustrate convergence behaviour.

Algorithm: | ERLEptesn [dB] [ ERLEygp [dB] | teony [5]]
LMS -15,00 -22.91 5.469
BLMS(8) -16,30 24,41 5,453
FLMSPC -2,39 -4,26 5,993
FLMS 2,62 6,79 6,025
FNLMS -36,37 -43,84 3,974
MDF -44,51 -51,36 2,159

Tab. 2 Properties of algorithms
LMS... ERLE_Str=-15 dB, ERLE_Min=-22.91, t_Conv=5460s

0

-5

10F

-
o
T

ERLE [dB]
o '
=]

o
]
:

&
=]
T

-a5F

tis]
Fig. 4 Time evolution of ERLE for LMS algorithm
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The convergence properties of the BLMS algorithm are
shown in Fig. 3. Behaviour of BLMS with length 8
(Lpiock=8) is very similar to the LMS. The ERLEy
improvement is 6,5 % for the same convergence time.

FNLMS... ERLE_Str=-36.37 dB, ERLE_Min=43.84, t_Comv=3.974s
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Fig. 5 Time evolution of ERLE for FNLMS algorithm

Using the linear convolution in FLMS instead of the cyclic
convolution in FLMSCY improves ERLE factor about 60
%. On the other hand, this step increases the computing
complexity (double size of FFT).

The best betterment of ERLE suppression capability
is reached by normalising the convergence factor p. This
means 550 % improvement of FNLMS ERLE owing to
FLMS algorithm. Also convergence time was successfully
decreased about 34%.

MDF... ERLE_Str=-44 .51 dB, ERLE_Min=51.36, t_Conv=2.159s
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Fig. 6 Time evolution of ERLE for MDF algorithm

The comparison reveals that the best solution (the greatest
convergence rate and ERLE) is gained by using the MDF
algorithm. The considerable shortening of convergence
time on 54 % comparing to the previous value of NLMS
algorithm is reached. Also ERLE improved about 17 %
owing to NLMS can be seen.

5. Discussion

Convergence rate is the best for MDF (splitted into 4
blocks) and FNLMS algorithm. The slower is the LMS —
time domain version. The slowest is FLMS because of the
use of the constant convergence factor and the block
length 265 samples (sampling rate 8 kHz).

Resulting ERLE is the greatest for the MDF and
FNLMS algorithms.

From the point of view of computation complexity
the using of frequency domain adaptive filter is necessary.
It implies using some sort of normalised algorithm, where
the normalisation process contributes greatly to the
precision of the algorithm. The best performance is
reached by MDF algorithm, which can be therefore
regarded as the best one for echo cancellation.
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