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Abstract

The paper presents a theoretical analysis of
the method that enables optimisation of the transient
response of a digital filter or of an arbitrary discrete
system, by pre-setting the initial conditions of the
inner state description.

For a particular design of a filter it is enough
to once evaluate coefficients, multiply them by the
magnitude of the first sample of the signal and do
filration by using these initial conditions.

The method was verified using the simulated,
and NMR signals to maintain spectrum baselines
correction, and will also be used for the study of an
optimum filtration of the NMR signal with a variable
instantaneous frequency.
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1. Introduction

One of the most frequently used methods in digital
signal processing is linear filtration. Generally, it is a
method used for selecting certain spectral components of
a signal from a mixture of more signals, and for
suppressing undesirable signal components.

Signal processing by linear digital filtration brings
some problems, such as the transient response at the
beginning of the signal. Its duration depends on the filter
order. This causes problems when particularly short
signals are filtered. In this case the useful signal can be
considerably distorted owing to the transient response or
it can be entirely lost in the transient response. This
restricts, to a certain degree, the application of linear
filtration to short signal processing [1].

The paper presents a theoretical analysis of the
method that enables optimisation of the transient
response of a digital filter in general or of an arbitrary

discrete system by pre-setting the initial conditions of the
inner state description.

Matlab [2] uses a similar method in one of its
functions. It is implemented as a function to filter short
signals. Here it is also used in combination with the
digital filtration method that permits the design of a filter
with a zero phase characteristic. This is possible by using
the FIR or IIR filter, and with the suppression of the
transient response that is due to the high dynamics of the
signal and central symmetrisation of the beginning and
end of the signal.

2. Method

In most technical applications, the digital filtration
algorithm is designed as a convolution of the signal with
the impulse characteristic of a digital filter. The resulting
total response (output signal from the filter) is the sum of
natural and enforced responses. Natural response is the
response of the discrete system to initial conditions (the
so-called inner states stored in the memory cells of the
digital filter), and enforced response is its response to the
input signal. Natural response is currently the response to
zero initial conditions. Any unsuitable number located in
the memory cell of the digital filter can cause marked
prolongation of the transient response, and in the case of
the IIR filter even oscillation.

From the analysis of the signals that cause the
transient response during filtration it follows that the
transient response is primarily influenced by:

- nonzero level of the first samples of the signal
— dc shift of the signal, and
—  high dynamics signal.

Digital filters, a special part of discrete systems, can
be described in many ways. The most frequently used
descriptions are based on differential equations and
transfer functions.

The differential equation adapted for use in digital
signal processing has the form:

Hn+N) + ay y(n+N-1) + @ y(n+N-2) + ... apf(n) =
bo x(n+M) + by x(n+M-1) + by x(n+M-2) + .. + by x(n)

(1)
where b; and g, are constant coefficients.
The transfer function has the form:
-1 =2 -M
F4 +hz” +bz" ++by,z
PR (€N S AR o VAU

- X2 l+az'+azt+-+az”



Radioengineering
Vol. 9, No. 2, June 2000

Optimisation of the transient response of a digital filter
Petr Sadovsky, Karel Bartusek

15

where b; and g; are again constant coefficients, the
same as those with differential equation (1).

In digital filtration, the inner state description is
rarely used. Information about inner variables in the
individual steps is unnecessary and description by means
of large matrixes is unpractical. To derive the calculation
of the initial conditions, that allow removal of the
transient response, it is necessary make oneself
acquainted with the description.

Prior to writing state matrixes that describe the
digital filter, it is important to choose a particular design
of the digital filter because the form of state matrixes
depends on it. For a discrete system described
unambiguously by differential equation (1) or transfer
function (2), different designs can be chosen. Then there
is a description based on inner state matrixes that
corresponds to the chosen kind of design. From this it
follows that the system described unambiguously by the

v [0 00
v, |1 00 -0
=0

v;(n)

ve@] [0 00 01

[y(n)] = [0 0 0

3. Theoretical analysis of evaluation
of initial conditions

On the basis of the design of an arbitrary digital
filter, described by differential equation (1) or transfer
function (2), we can evaluate the initial conditions that
will enable removal of the transient response in case of a
signal with a dc shift or jump change at its beginning. We
use the canonical structure and the state description
resulting from it (4a,b) to realise this. It has turned out
that this way is advantageous for further evaluations.

Prior to creation of state matrixes we complement
the coefficients of the differential equation, or operator a,
b, transfer, with zero coefficients so that

M=N. (5)

differential equation or the transfer function can be
described in many ways by means of inner state
description.

For the design of digital filters, the so-called
canonical structures [4] are most frequently used. These
structures have only such a number of retardation blocks
that is identical with the order of the digital filter.

The general matrix form of state equations is as
follows:

Vin) =AV(n-1) + BX(n)
¥(n) = CV(n-1) + DX(n) 3)

The state equations describe the filter, which is
defined by differential equation (1) or transfer function
(2) and designed according to the first canonical structure
written as components, have the form:

~ay |[wn-D]-[ by—by-ay ]
Ay | [ vo(n=D) | | Dy =By -ay
Ay || vs(n=1) |+ byry =y -ay, [x(n)] (4a)
—dl | w1 ] b =b,-a, |
-v, (n—'l)-
v,(n-1)
0 0 1]| vy(n=1) [+[5]-[x(m)] (4b)
A (n—-l)_

We will write matrix equation (4a) as a system of
linear equations N containing N unknowns.

W) =-a,vy(n-0) "'[b.u —b 'aN] (7))
V(M=% (n-D-ay, vy»n-) +[bM-] b -aN_i] -x{(r)
w®=vn-D-a,,- vl\,(n—l)-i-[!JM_2 -4 —aH] -x(n) (6)

V)=V (=D~ v, (=D}~ -q |- 1)
We will write matrix equation (4b) in the form

Hn) = vatn-1) + byx(n) (7)
Let us assume that the input signal x(n) creates a
sequence of ones {1, 1, 1, ..., 1, 1} or a unit jump.
The input signal y{(n) is required not to contain the
transient response, i.e. to be instantaneously in the first
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step and the succeeding ones the same as the input
sequence x(1).

wn) =x(n) =1 3)
n=123,

By substituting this condition into equation (7), we
calculate the value of the state variable vp{(n-1).

y(n) =vp(n-1) + byx(n)

We put the condition:

yn) =x(n) =1
1 =vn-1) + by 9
vin-1Y=1- by

This condition must be valid also in the next steps
because we require that relation (8) be fulfilled also in
them. Hence we can conclude that when the output y(n)
is to be equal to one, then the state variables in each step
will keep having the same value.

vi{n) = vin-1) (10)
where i=1,2,3,.., N

Relation (10) can also be obtained by successive
substitution of equation (9) into equations (6) and by
their solution. After making several steps of filtration we
arrive at the same conclusion (10). On the basis of this
relation we can write: :

vi(m) = wi(n-1)
vo(n) = vo(n-1)
vs(n) = vi(n-1) (1n

va(n) = va(n-1)

By substituting equations (11) and condition (8)
into equations (6) we obtain the system of linear
equations N containing N unknowns.
vw(m)=-ay -vy(m)+b, —b,-ay
vy(m)=v (M) —ay_ vy (1) +by —by-ay

vi(n) =vy(m)—ay_, -vy(m) +by , —by-ay_, (12)
vy =vy (n)—a,-vy(n)+b -b,-q

System of linear equations N (12) can be rewritten
into a more clearly arranged matrix form.

1 0 0 - 0 ay |[vm] [ by—bay
-1 1 0 0 0 ay,||v by —byay_
0 -1 1- 0 ay, || vs(® |=|bys —boay
0 0 0 - 0 -1 l+a|(vi(m] | B-ha |
(13)

Matrix equation (13) can further be rewritten into a
form that is more suitable for algorithmisation.

b -y
b —ba,
b jboaa

[+a, =1 0 0 - O[ vy ]
a 1 -1 0 - 0f|vy,®
g 0 1 -1 - 0[|v,®

a, 0 0 0 - -1{| wn®) by —byay
lay, 0 0 0 -« 1] w® | [ by—bay |
(14)

By solving this system of linear equations N
containing N unknowns we obtain all initial conditions
for memory cells of the digital filter under design. From
this it follows that there is no need to use state equation
(7) for the solution of initial conditions, and this is
advantageous.

As regards the filtration application itself, prior to
every new filtration it is necessary to multiply all
evaluated coefficients by the magnitude of the first
sample of the signal. Otherwise, filtration will not work
correctly.

4. Experimental verification

The method was used for filtration of NMR signals.
However in this paper an example is presented which
better illustrates the capabilities of this method. As the
input signal the function s(t)=4+sin(2-7- f-f) was
used and in the other case it was the function
s(?) = cos(2- 7 - f -t), where f= 1Hz and the signal is
sampled using the sampling frequency 1000Hz. Signals
prepared this way are filtered using a 15th order low pass
band digital filter, butterword approximation and cut-off
frequency fin = 40Hz. Signals before and after filtration
are shown in Fig.1a,d and their spectra in Fig.1b,e. The
spectra before filtration contain only the spectral line at
the frequency 1Hz, and the first signal contains the DC
component in addition to that. Signals after filtration
contain a greater number of harmonics. These are due to
the transient response. In an ideal case, the output signal
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Fig.1 Upper are the simulated signals with DC shift. a) imput signals and signals after filtration, b) their spectra, and c) the signals after
designed filtration. Under are the simulated signals with nonzero mean value. d) input signals and signais after filtration, e) their

spectrum, and f) the signals after designed filtration.

should remain unchanged after passing through the filter
because the cut-off frequency of the filter lies high above
the frequency of the input signal.

The input signal and the signal after filtration
under non-zero initial conditions are shown in Fig.1c and
Fig.1f. When we remove the time lag caused by the order
of the filter, we find that the output signal is identical
with the input one. The transient response has been
removed.

5. Conclusions

An analysis of the digital filter will enable
optimisation of its transient response by pre-setting the
initial conditions of the inner state description. This type
of filtration is suitable, above all, for filtration of short
signals where the useful signal can be markedly distorted
by the transient response or entirely lost in it. The
advantage of the method is that no auxiliary signal
operations need to be made before filtration. For a
particular design of a filter it is enough to once evaluate
coefficients, multiply them by the magnitude of the first
sample of the signal and do filtration by using these
initial conditions.

The method was simulated using the signals
described in the preceding chapter, and NMR signals to
spectrum baselines correction. Also it will be used for the
study of an optimum filtration of the NMR signal with a
variable instantaneous frequency.
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