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Abstract \

In this paper, several adaptive least mean squares
(LMS) location-invariant filter (L-filter) modifications
will be described. These filters are based on linear
combination of order statistics. The adaptive L-filters
are able to adapt well to variety of noise probability
distribution, including impulsive noise. They also
perform well in the case of nonstationary signals and,
therefore, they are suitable for image processing, too.
Following this L-filter property, applications of the
adaptive LMS L-filters for filtering two-dimensional
static images degraded by mixed noise consisting of
additive Gaussian white noise and impulsive noise will
be presented in this paper. Based on conveniently
selected experiments intent on image filtering, the
properties of a several adaptive L-filters modifications
will be demonstrated and compared. It will follow from
experiment results, that the L-filter modification called
signal-dependent LMS L-filter yields the best results.
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1. Introduction

Many problems in communications, digital signal
processing and image processing involve noise removal
whose characteristics are unknown or time varying or both.
Such types of problems are difficult to solve because of
lack sufficient knowledge about characteristics of signals to
be processed. Here, adaptive filters adjusting their
parameters by the statistical characteristics of the filter
input signal can be applied with advantage [1].

In the field of adaptive filters, linear filters (e.g. FIR
filter) have played a very crucial role. The obvious
advantage of linear filters is their simplicity. Design,
analysis and implementation of such filters are relatively

straightforward task in many applications. However, there
are several situations in which the performance of linear
filters is unacceptable. Generally, non-linear filters can be
applied with an advantage in comparison with that of linear
once in the case of non-Gaussian signal processing or if
they are applied for non-linear system modelling or
identification. With regard to these facts some significant
applications of non-linear adaptive filtering include e.g.
echo cancellation, channel equalisation, speech and image
prediction and filtering, aircraft navigation, etc.

Unlike the case of linear systems, which are
completely characterised by the system’s unit impulse
response function, it is impossible to find a unified
framework for describing arbitrary non-linear systems.
Consequently, the researchers working on non-linear filters
are forced to restrict themselves to certain non-linear
models that are less general. Non-linear filters developed
using such models include homomorfic filters,
microstatistic filters, morphological filters, polynomial
filters, piecewise non-linear filters, filters based on neural
nets, order statistic filters, etc [2-4].

There are a number of non-linear filters based on
order statistics concept [2]. Among them are the L-filters
whose output is defined as a linear combination of the
order statistics of a filter input signal [2,5-7]. The adaptive
L-filters are able to adapt well to variety of noise
probability distribution, including impulsive noise. They
also perform well in the case of nonstationary signals and,
therefore, they are suitable for image processing, too.

In this paper, the adaptive LMS L-filter modifications
as constrained and unconstrained adaptive LMS L-filter
without and with step-size normalisation are presented.
Besides, a signal-dependent adaptive LMS’ L-filter based
on a sophisticated combination of two L-filters is
described, too.

The adaptive L-filters presented in this paper will be
applied for image filtering, where images are degraded by
mixed noise. Moreover, the mixed noise will be consisted
of additive Gaussian white and impulsive noises. The
ability of these filters to suppress such a noise will be
demonstrated by several experiments. The obtained results
will indicate that the L-filters belong to a group of robust
filters, which are able to remove the mixed noise in an
effective way. These filters are characterised also by the
ability to suppress noise in homogeneous areas and to
preserve the edges at the same time. With regard to these
facts, it will be concluded that the class of adaptive L-
filters represents very perspective approach for image
filtering in the case of image degradation by mixed noise
including impulsive noise.
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2. LMS L-filters

2.1 Location-invariant LMS L-filter

In this section, several modification of the LMS L-
filter applied for processing a non-constant image
corrupted by zero-mean mixed noise consisting of additive
Gaussian white noise and impulsive noise will be described
[2, 5-7].

Let us consider that the observed image signal
x(i, j) can be expressed as a sum of the noise-free image

s(i, j) plus zero-mean additive white noise n(i, j) i.e.

x(i, j) = s(i, j) +n(i, j),

fori=12,...K; j=12,..,L, (N

where (i, j) denotes the pixel co-ordinates. Then, our

intention is to design a filter defined on a pixel
neighbourhood (called the filter window) that aims at
estimating the noise-free central image pixel value by
minimising mean square error of estimation (MSE).

In this paper, the filter with the square window of
dimensions = x E will be applied, where E represents the
number of rows and columns. Generally, Z is assumed to
be an odd number, i.e. ==2E+1. Then, the input filtered

matrix for the image pixel x(i, j) has the following form

(i j-&)xi-&j-¢+1)-xli-&)j+&)
X(k)= - : R o)

i+ & j=&)x(i+&j-E+1)x(i+&,j+¢)
In this expression, running index k defined as
k=(-1)K+j 1<i<K 1sjsL ©)

is used instead of the pixel co-ordinates I, j. Kand L

denote the row index and column index, respectively. This
notation will be used throughout this paper.

In order to describe a filter based an order statistics,
let us rearrange the = x = filter window (2) into NxI vector

x, (k)= (x(l)(k),x(zl(k),xm(k),---,x{N}(!c))y, )
where xm(k) denotes the i-th largest pixel of input image

and N =(2& +1)*.
Now, we are seeking an optimum L-filter whose
output at k

yk)=a"(k)x, (k) %)

minimises mean square error of estimation (MSE) defined
as

J(k)= El(y(k)-s(k))*1= (6)
= E[s(k)"]-2a" (k)p(k) +a" (k)R (k)a(k)

subject to the constraint

N
S a,(k)=1- ©)
i=1
In the (6), R(k) = E[x,(k)x! (k)] is the correlation
matrix of the observed ordered image pixel values and
p(k) = E[s(k)xT (k)] denotes the cross-correlation vector
between the ordered input vector x,(k) and the desired
image pixel value s(k) . The vector

a” (k)= a, (k) a, (k)...ay (k)] (8)
is the L-filter coefficient vector.

By employing (7), we can partition the L-filter
coefTicient vector as follows

(k)= a7 (B)a, (aZ (0] - ©)

where p=(N+1)/2 and a (k) and a,(k) are
(N =1)/2x1 vectors given by
ar(k)=(a|(k)!""au-l (k))r (10)

a, (€)= (a,., (€),~,ay (k)

Taking into account the constraint (7), the coefficient
a, (k) connected with the sample X, (k) can be obtained

as

ﬂ.,(f‘)=1—1£-13:(k)—13-|a:(k)' an

where 1 _ is (v —1)xl unitary vector.

v-l

Similarly to the filter coefficient arrangement by (9),
we can rearrange the ordered input vector x,(k), too.

Then, x,(k) can be expressed as follows

x, (k) = (&7 (), (1) - (1)
Let a’(k) is the reduced L-filter coefficient vector
a'(k)= (a7 (K)al (1)) (13)

and i,(k) be the reduced ordered input vector of
(N = 1xI type described as follows

i (k)=[x,.(k)—xu(k)l]'

x,,(k)-x, (k)1

The intention of ours is to present an adaptive L-filter
minimising (6) and fulfilling the constraint (7). Then,
following the analysis in [1,5] where the steepest-descent

(14)
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algorithm and stochastic approximation principle is applied
for (6) minimising, the following recursive relation for
adaptation, the reduced L-filter coefficient vector can be
obtained in the form:

a'(k +1) = a'(k)+ ue(k)x, (k). (15)
where
e(k) = s(k)- y(k) (16)

is the estimation error at pixel & and constant parameter

is so-called step-size of adaptation. The expression (15)
represents the LMS algorithm of the constraint location-
invariant L-filter (L-LC filter). Then, the adaptive
constraint LMS location-invariant L-filter performance is
described by expression (5), (15) and (16). It follows from
(16) that a desired image (sample s(k) ) has to be available
for the process of constraint location-invariant L-filter
adaptation.

Following the similar procedure, the LMS algorithm
of location-invariant unconstrained L-filter (L-LU filter)
adaptation given by

Ak +1) = a(k)+ pe(e)x, (k) (17)

can be obtained. In the derivation of (17), the constraint (7)
is not taking into account. Then, the adaptive LMS L-LU
filter performance is described by expression (5), (16) and
(17). Similarly, to that of the LMS L-LC filters, a desired
image has to be available for the process of L-LU filter
adaptation.

2.2 Normalised LMS L-filter

A difficult problem frequently met in the performance
of adaptive filter based on LMS algorithm performance,
such as (14) or (16), is the selection of the step-size p. The
importance of the step-size selection following from the
fact that parameter g controls the rate of convergence and
stability of a filter adaptation process. It can be shown (e.g.
[8]) that for achieving convergence of the average MSE to
a steady-state for (15), x should satisfy the condition

2
< = .
3tr(R) 3xtotal powerof x(k)

<u (18)

where fr[.] stands for the trace of the matrix inside of
brackets.

It follows from (18) that the convergence of LMS
algorithm strongly depends on the power of the filter input
signal. The (18) fulfilling is complicated especially in the
case that a filter operates in nonstationary environment (as
in image processing). In such a case, it is reasonable to
employ a time-varying step-size u(k)dependent on the
power of the filter-input signal. Following this requirement,
the most frequently approach for u(k) selection is to

chose u(k) as

;‘[0 }‘JU (19)

u(k) =— = 2’
x,"(k)x, (k) |x, (k)|

where L, is from the interval
2
0< s (20)

Then, by using (19), (15) and (17), the following LMS
algorithms can be obtained:

Q' =a(k)+ —to
o) =30+

£(k)x, (k)-

(k)x, (k) 2n

Ak +1)=a(k)+ £

x, (k)

The recursive equations (21) and (22) describe the
adaptation of the coefficients of the normalised LMS L-LC
filter (L-NC filter) and the normalised LMS L-LU filter (L-
NU filter).

(22)

2.3 Modified LMS L-filter

It is well known that the rate of convergence of the
LMS algorithm is slower than that of other adaptive
algorithms (e.g. RLS algorithms, XLS algorithms, etc.).
This slow rate of convergence may be attributed to the fact
that the only one parameter u controls the convergence of
all filter coefficients. It follows from the LMS algorithm
theory (e.g. [1]) that a modification of LMS algorithm with
higher rate of convergence can be obtained by employing
different step-sizes g, for different L-filter coefficients.

Then, the step-size sequence is computed as follows

ix(i)(k - J)
m (k)= py —

Zx(,)(k~j)

J=0

(23)

By using (23), the modified LMS L-LC filter (L-MC)
and modified LMS L-LU filter (L-MU) updating formula
are given by

a'(k+1)=a"(k)+ e(k)M(k)x, (),

alk+1)=a(k)+e(k)M(k)x, (k). (25)

29

respectively. In this expressions, M(k)and M(k) denotes
the diagonal matrices

M(k) = diag[tul (k)nu: (k)’ YT (k)]*

M (k) = diag sz, (k) s, (k)....., 1, (k)]-

(26)

27)



18 Suppression of mixed noise in the similar images by using adaptive LMS L-filters
D. Kocur, R. Hudec, S. Marchevsky

Radioengineering
Vol. 9, No. 4, December 2000

2.4 Signal-dependent LMS L-filter

In this section, the signal-dependent LMS L-filters (L-
SD filters) will be described. L-SD filters adjusts its
smoothing properties at each point according to the local
image content in order to achieve edge preservation as well
as maximum noise suppression in the homogeneous
regions [5].

L-SD filters consist of two independent L-filters
having different filter window and whose outputs y, (k)

and y, (k) are combined to give the L-SD filter final

response.
Besides, the L-SD filter employs the local signal-to-
noise ratio measure

o,
plk)=1- pTg (28)

where o-:(k) is the noise variance and o’f(k) is the

variance of the noisy input observations. The coefficient
ﬂ(k) is used as switch between outputs of the two LMS L-

filters. Then the L-SD filter output is given by
Vi (k)’

ylk)= {
Y (k)!

where 0 < f3, <1 is a threshold that determines a trade-off
between noise suppression and edge preservation.

if pk)> 5, 29)

otherwise

3. Experiments and results

In this section we present results of two
experiments demonstrating performance properties of the
L-LC filters, the L-LU filters, the L-NC filters, the L-NU
filter, the L-MC filters, the L-MU filters and the L-SD
filters in the case of filtering images corrupted by mixed
noise, consisting of additive Gaussian white noise and
impulsive noise. Besides these adaptive L-filters, the
median filter (with the square window of dimensions 3x3)
as a reference filter has been applied for noisy image
filtering, too.

For the purpose of the tested filter performance
quality evaluation, the following performance indices have
been used:

e mean absolute error (MAE) defined as:
l K-15L-15
MAE = s sGj)- i j) GO
(K—30XL—30),§.; ;,I (.7)- i)
¢ mean square error (MSE) defined as:
K-15L-15

MSE = o 3 9 (o)) 36 )F OV

(K -30XL-30) 5% =

¢ noise reduction in dB (NR) defined as:

K-I15L-15

Z.s ZU(f =565y

(32)

(k - 30)(L 30)

NR =10log,,

J‘:
s
u.u.

(k- 30)(L 30) 5 x(0.J)-

;15

e mean absolute error reduction in dB (MAER)

defined as:
SYS e )- o6}
i, j)=sli.j) (33)
MAER= 20'0310 (K 30XL 30) i=15 j=l$

1 K-15L-15

2 2. x)=s6.)

(K -30)L-30) & 5

In the expressions (30-33), s(i, j), x(i, j) and y(i,j) are
the original image pixel, the noise-free image pixel and the
filtered image pixel, respectively.

In the experiments, it is presupposed that the original
noise-free images (reference image) shown in the Fig.1 are
available.

a ' b
Fig.1 Original noise-free images. (a) Lena. (b) The 2™ frame of
Trevor sequence

The first experiment was performed by using the 2m
frame of Trevor sequences. Here, we would like to present
the ability of adaptive LMS L-filters modifications to
remove noise when this original image has been corrupted
by mixed noise, consisting of the additive Gaussian white

noise with variance o> =400and impulsive noise with
probability p=10%. The coefficients of the tested adaptive
L-filters have been initialised randomly in the interval (0,1)
and they have been normalised by their sum so as their sum
equals unity.

The entire noisy as well as original image has been
used in the adaptation of the adaptive filters. Here, a single
run on the training images has been performed. As adaptive
filters, the L-LC filter, the L-LU filter, the L-NC filter, the
L-NU filter, the L-MC filter, the L-MU filter and the L-SD
filters have been used. In the case of adaptive filter
training, the coefficients derived during the last window
within the last image row processing have been applied to
filter the entire image. By using this approach, the filtered
images have been obtained.

For the adaptive L-filters, a suitable value of the step-
size u, has been found experimentally. Fig.2 shows the

NR achieved by the L-NC and L-NU filters for a several
values of parameter z. In our experiments, we have used

this value of 4, for which NR performance index attains a
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minimum. The £4,=0.15 for the L-NC filter and the £,=0.25
for the L-NU filter were found. In the experiments, the
step-size 1,=0.2 has been used as compromise between
them.

-10.86

-10.881

-10.80

-10.921

-10.941

NR (dB)

-10.961

-10.981

-11.001

-11.02 . .
0 0.2 0.4 06 0.8 1

Rate of convergence

Fig.2 Plot of noise reduction (NR) performance index achieved by
the L-NC and L-NU filters versus step-size parameter (i,

By using the original and filtered 2™ frame of Trevor
sequences, the filter performance indices have been
evaluated. The results are shown in the Table 1. It can be
observed from this table, that the best result has been
achieved by the L-SD filter consisting of two L-NC filters.
The original image corrupted by mixed impulsive and
additive Gaussian noise as well as the output of L-SD filter
is shown in the Fig.3. Here, the filter window with
dimension 5x5 for edge preservation and the window of
dimension 3x3 for noise suppression in homogeneous
regions were applied. The threshold was chosen £,=0.75. It
can be seen from Table I, that the L-SD filter has yielded
an almost 1.1dB better NR and 1.6dB for MAER compared
to the median filter.

Table 1. The filter performance indices achieved for the 2™
frame of Trevor sequence processing

Method

Performance indices

MAE

MSE

NR

MAER

Noised

21.4890

1240.2

Median
3x3

8.1560

113.0060

-10.4039

-8.4148

L-LC
p=5.10"7

7.5536

97.3064

-11.0535

-9.0812

L-LU
p=5.10"

7.5313

96.8655

-11.0732

-9.1070

7.5651

98.3294

-11.0081

-9.0680

7.5559

98.4054

-11.0047

-9.0786

7.6254

99.5852

-10.9529

-8.9991

7.5948

98.3285

-11.0081

-9.0341

6.7528

87.6792

-11.5059

-10.0547

a b

Fig.3 The second frame of Trevor sequence. (a) Original image

corrupted by mixed impulsive and additive Gaussian noise. (b)
Output of the L-SD filter

By using the results of this experiment, we would like
to demonstrate also the ability of the L-filter class to
suppress noise in homogeneous areas and to preserve the
edges at the same time. This property of the L-LU filter is
illustrated in the Fig. 4 and Fig. 5, where the image row
#128 of the 2" frame of Trevor sequence for an original,
noised and filtered images are presented.

300 -
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o
o

s
w
o

-
o
=]

GREY LEVEL INTENSITY

w
(=]

0 50 100 150 200 250 300
PIXEL POSITION

Fig.4 Row #128 of the 2™ frame of Trevor sequence for original and
noised image

300

—- (5] (]
w (=1 ot
o [=] (=]

GREY LEVEL INTENSITY
=
(=]

" — Original

memes Filioped

0 50

100 150 200 250 300
PIXEL POSITION

Fig.5 Row #128 of the 2™ frame of Trevor sequence for original
image and the image filtered by the L-LU filter
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We can see from these figures, that the L-LU filter
has a high ability to suppress noise in homogeneous areas
and to preserve the edges. The similar results have been
obtained for the other tested L-filters.

The second experiment has been intent on analysis of
robustness of the above described adaptive L-filters. In this
experiment, the optimum coefficient vectors obtained in the
first experiment were applied for filtering the different
image (image of Lena) and similar image (the 6™ frame of
Trevor sequence). The noise applied for the different and
similar images corruption had the same statistical
properties as the noise applied in the first experiment.
Results of these experiments achieved by the particular
filters are given in the Table 2 and Table 3.

As it can be seen from these tables, each modification
of the L-filters is more robust for different image than that
of L-SD filter. It follows from the fact that the image of
Lena includes more details than the 2™ frame of Trevor
sequence. The weight coefficients of the L-SD filter were
originally obtained by using threshold £,=0.75, but for
image of Lena other threshold have to be used.
Furthermore, we can see from the Table 2, that the L-MC
filter has yielded about 0.3dB better result than that of
median filter for both NR and MAER criterion.

Table 2. The filter performance indices achieved at
filtering image of Lena by using the optimum coefficients
vectors obtained within the 1* experiment

Method

Performance indices

MAE

MSE

NR

Noised

21.0991

1120.1

Median
3x3

9.7984

184.8124

-7.8253

L-LU
p=5.10"

9.4689

173.3323

-8.1038

L-MC
p=5.10"7

9.3807

170.9787

-8.1632

L-SD

9.2424

208.6145

-7.2991

Table 3. The filter performance indices achieved at
filtering the 6™ frame of Trevor sequence by using the
optimum coefficient vectors obtained within the [

experiment
Method

Performance indices

MAE

MSE

NR

Noised

21.5347

1243

Median
3x3

8.1686

114.3186

-10.3635

L-LU
p=5.107

7.5564

98.5254

-11.0092

L-MC
p=5.10"7

7.6541

101.4692

-10.8813

L-SD

6.8212

92.4386

-11.2861

Original image of Lena corrupted by mixed impulsive

and additive Gaussian noise and the output of the L-MC
filter obtained by using the optimum filter coefficients
obtained within the 1* experiment are shown in the Fig.6.

a b
Fig.6 Image of Lena. (a) Original image corrupted by mixed
impulsive and additive Gaussian noise. (b) Output of the L-MC
filter by using the optimum filter coefficients obtained within the
1* experiment

In the case of similar images processing, it can be
seen from the Table 3 that the all L-filter modifications are
robust. Here, the best results were achieved by using the L-
SD filter. For this filter, we obtained an almost 0.9dB better
NR and 1.5dB MAER compared to median filter.

Original image of the 6™ frame of Trevor sequence
corrupted by mixed impulsive and additive Gaussian noise
and the output of the L-MC filter obtained by using the
optimum filter coefficient vectors obtained within the 1*
experiment are shown in the Fig.7.

a b

Fig.7 The 6" frame of Trevor sequence. (a) Original image
corrupted by mixed impulsive and additive Gaussian noise. (b)
Qutput of the L-SD filter by using the optimum filter coefficient
vector obtained within-the 1% experiment

5. Conclusion

In this paper several adaptive LMS L-filters applied
for filtering constant images corrupted by mixed noise have
been described. These filters are characterised by the
ability to suppress noise in homogeneous areas and to
preserve the edges at the same time. Besides, they possess
the robustness property i.e. they can be applied with
success for filtering some classes of similar and different
images. It is evident from the experiments that the best
results have been provided by adaptive signal-dependent
LMS L-filter. With regard to these L-filter properties we
believe that the L-filter class can be successfully applied
for filtering constant images corrupted by mixed noise,
including impulsive noise.
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