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Abstract

This paper presents an investigation of the
deterministic and stochastic chaos. The modified
Colpitts  oscillator is used as an example of
deterministic chaos in electronic circuits. The
graphical method of Lorenz maps is used for
graphical observation of both chaotic classes.
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1. Introduction

The observation of the deterministic chaos may be
sometimes difficult task. In the time analyses the
deterministic character of the signal cannot be seen. Some
other tools are usually used for this purpose. A very simple
but powerful tool for determination of recurrent character
of deterministic chaos is here presented. The Lorenz plot
discovered Lorenz to easier studying the simulated chaotic
signals. This map is qualitatively similar to Poincaré map,
but its construction is easier.

2. Lorenz Map

The mentioned tool for observation the deterministic
character is Lorenz map constructed from extremes in time
characteristic. The Lorenz map is a map, which
exemplifies the interdependency of two neighbour
extremes and can be described by recurrent equation

Xewety = S (X0 n=0]12,... 0))
Thus, the next extreme X(,.) is defined by function f and
extreme x(,. The {x.,} are then successive extremes of a
concrete deterministic chaotic signal. Thereby, the Lorenz

map for deterministic chaotic signal is a function, but does
not have to be continuous function. The Lorenz map will
be some type of area, which depends on distribution if the
signal is stochastic.

3. Colpitt’s Oscillator

As an example of deterministic chaotic circuit, the
Kennedy’s chaotic Colpitts oscillator by [1] is used. This
oscillator has chaotic character for certain circuit’s
parameters (Fig. 1). In this type of oscillators, to get
chaotic behaviour must be the resonant part of circuit
strongly attenuated. In Kennedy’s modification of Colpitts
oscillator is this condition satisfied by resistor R, in series
with inductor L,;. More information is given in [2].
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Fig. 1. Chaotic Colpitts oscillator by [1].
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Fig. 2. Numerically calculated time characteristics for Colpitts
oscillator
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Numerically calculated time characteristics using
Eurel’s one step method of Colpitts oscillator are in Fig. 2.
The chaotic character of time characteristics is also readily
showed in Fig. 2.
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3.1 Lorenz Maps of Colpitts Oscillator

Lorenz maps of Colpitts oscillator were constructed
theoretically and also practically. The theoretical Lorenz
maps were constructed using numerical simulation of
Colpitts oscillator. The results occur in Fig. 3. These
Lorenz maps have fractal character. In finite resolution
can belong to one x-axes point more than one point from
y-axes, like in Fig. 3. Mathematically exemplifies the
Lorenz map the Eq. 1, where the x,.;, is extreme
following the extreme x.

The practically measured Lorenz maps occur in Fig.
5 and 6. By using special digital oscilloscope attached to
the personal computer were these maps constructed. (This
device named Iferoscope is in details described in [2]).
The practically measured Lorenz map in Fig. 5
corresponds to the theoretical Lorenz map in the left up
corner in Fig. 3. The practically measured Lorenz map in
Fig. 6 corresponds to the theoretical Lorenz map in right
up corner in Fig. 3.
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Fig. 3. Numerically calculated Lorenz maps for Colpitts oscillator

The similarities between theoretically computed and
practically measured Lorenz maps are well visible in these
figures. The deterministic character of time dependence of
deterministic chaotic systems, which is not valid for
stochastic signal is also proved in these Lorenz maps. All
these extremes are exactly defined in deterministic chaotic
systems what shows deadly the Lorenz maps, too.
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Fig. 4. Lorenz map for stochastic signal

3.2 Lorenz Maps of Stochastic Signal

The Lorenz map of stochastic signal has character
given by the probability distribution of examined system.
For example the Lorenz map for flat random noise is

square because the probability of next extreme’s amplitude
is same for all extreme. In Fig. 4 is given an example of
such signal but the noise is not ideal which shows the
map.
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Fig. 5. Colpitts oscillator Lorenz map of Ube and its maxima.
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Fig. 6. Colpitts oscillator Lorenz map of Ube and its minima.

4. Conclusion

We showed on mentioned examples, how can be by
easy way found out the real character of strange
one-dimensional signal. The Lorenz maps give us a
primitive tool for recognising the stochastic signals from
non-stochastic. This principle can be also easily used in
practice measuring what differentiate the Lorenz maps
from other techniques used for same reason.
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