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Abstract. The conditions for an optimized design of the 
second dynamical system having low eigenvalue sensitivi-
ties are directly derived. Their more general form is in 
accordance with the previous results obtained by using 
linear topological conjugacy. 

has the roots given by 

2121122211212211     , λλaaaaλλaa =−+=+ . (3a,b) 

The relative eigenvalue sensitivities with respect to the in-
dividual state matrix parameters are 
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1. Introduction 
Recently published new state models of piecewise-

linear (PWL) dynamical systems of Class C can be used as 
prototypes for their circuit realization. For this purpose 
their eigenvalue sensitivities have been minimized using 
linear topological conjugacy [1], first for linear systems 
and then applied to PWL systems. By detailed analysis of 
the second order systems the new optimization conditions 
giving minimum sum of relative eigenvalue sensitivity 
squares with respect to the change of the individual state 
matrix parameters have been derived [2]. Applying them 
separately to the cases of real and complex conjugate ei-
genvalues, two different forms of the optimized state ma-
trix are obtained [3]. In this contribution the generalized 
form of directly derived optimization conditions is intro-
duced. It evidently includes both previous forms [3] as two 
special cases. 

They evidently satisfy to the basic sensitivity invariant con-
dition [2], i.e. Σ Sr (λk, aij) = 1. 

3. Generalized Conditions 

Utilizing the basic formulas (3a,b), the sum of the 
relative sensitivity squares is obtained in the form 
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In accordance with the chosen sensitivity measure [2], the 
first derivatives of the expression (5) with respect to the 
individual state matrix parameters are calculated and then 
the corresponding generalized conditions for their zero 
values can be determined, i.e. 

2. Basic Principles 
Consider second-order linear dynamical system des-

cribed by general state matrix form 

xAx =&  ,     where       . (1) 







=

2221

1211

aa
aa

A
02

11
=

∂
∂ ∑ ),( ijkr aλS
a  , (6a) Its characteristic equation 

( ) ( ) ( =−++−=− 211222112211
2det aaaaaass A1 )  

( )( ) 0 21 =−−= λλ ss  (2) ∂ r 02

22
=

∂ ∑ ),( ijk aλS
a  , (6b) 



28 J. POSPÍŠIL, Z. KOLKA, S. HANUS, V. MICHÁLEK, J. BRZOBOHATÝ, OPTIMIZED STATE MODEL OF PIECEWISE-LINEAR… 

 

02

12
=

∂
∂ ∑ ),( ijkr aλS
a  , (6c) kλ  1λ  2λ  

),(
),(

22

11

aS
aS

kr

kr

λ
λ

=
=  











+

1

21
4
1

λ
λ  











+

2

11
4
1

λ
λ  

),(
),(

22

11

aS
aS

kr

kr

λ
λ

=
=  











−

1

21
4
1

λ
λ  











−

2

11
4
1

λ
λ

 

∑ ),(2
ijkr aS λ  

























+

2

1

21
4
1

λ
λ  

























+

2

2

11
4
1

λ
λ

02

21
=

∂
∂ ∑ ),( ijkr aλS
a  . (6d) 

Starting from the (6a,b), the general optimized parameters 
a11 and a22 are obtained as 

( )212211 2
1 λλ +== aa   (7) 

that corresponds to the basic design formula (3a), while the 
conditions (6c,d) finally entails the common generalized 
formula for the product of parameters a12 and a21 Tab. 1. The individual eigenvalue sensitivities and the optimized 

sensitivity measures. ( ) 2
212112 4

1 λλ −=aa   (8) 

4.3 Two Complex Conjugate Eigenvalues that evidently corresponds to the basic design formula (3b). 

In this case λ1 = λ’ + jλ’’, λ1 = λ’ - jλ’’. Substituting 
them into general conditions (7) and (8), we obtain the 
special simplified forms 4. Detailed Results  

for the Individual Special Cases 
λ′== 2211 aa ,         (12) ( )22112 λ ′′−=aa

In the second-order systems three basic cases of two 
eigenvalues can exist: and the corresponding state matrix can be rewritten into the 

so-called complex decomposed form, including the 
optimization coefficient K [3] 

4.1 Two Different Real Eigenvalues 
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A  . (13) Here λ1 ≠ λ2 and the corresponding state matrix can be 

rewritten into the form [3] 
In this case all the sensitivity functions are obtained in the 
complex form and the same functions, expressed separately 
for the eigenvalues real and imaginary parts, can easily be 
derived. Then the optimum sensitivity measures are 
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and the coefficient K is a free parameter utilizable in opti-
mized design procedure also for PWL dynamical systems 
of Class C. The corresponding eigenvalue sensitivities and 
the resultant optimized sensitivity measures are summa-
rized in Table 1. 

2
1),(),( 22 =′′=′ ∑∑ ijrijr aSaS λλ . (14) 

5. Statistical Evaluation 
4.2 Two Identical Real Eigenvalues 

The system sensitivity properties could be easily eva-
luated with the Monte-Carlo method. Let us suppose for 
simplicity the elements of the system matrix A are statisti-
cally independent with the equal variance. By means of 
repeated generation of random parameters it is possible to 
obtain an estimation of probability density function of re-
sulting eigenvalues that determine qualitative behavior of 
the studied system. Fig. 1 shows eigenvalue scatter plots 
for the complex case. The optimum realization (Fig. 1a) is 
compared with the equivalent eigenvalue form (Fig. 1b) 
with the matrix 

Then λ1 = λ2 = λ  and the corresponding state matrix 
becomes to the simplest Jordan form 
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The simplified eigenvalue sensitivities and sensitivity 
measures are: 
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Fig. 1. Comparison of sensitivity properties for system with 
complex eigenvalues λ1,2 = -2 ± j.. 
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Fig. 2. Comparison of sensitivity properties for system with real 
eigenvalues λ1 = -1, λ2 = -1.8. 

Fig. 2 shows the same comparison for the real case. It is 
evident; the optimum form minimizes the influence of 
variation of circuit parameters to the system dynamics. 
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6. Conclusion 
The resultant general equations (7) and (8) include a 

degree of freedom for the optimized model design for all 
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can be used [4]. 
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