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Abstract. Starting from the piecewise-linear (PWL) auto-
nomous dynamical system optimized from the eigenvalue 
sensitivities viewpoint the corresponding optimized non-
autonomous linear (single-input single-output) system is 
derived. Such a design procedure gives the possibility to 
obtain minimum eigenvalue sensitivities with respect to the 
change of the individual model parameters also for non-
autonomous linear systems. Two examples of the system 
having the complex conjugate poles and zeros, i.e. the op-
timized second-order band-reject and all-pass filter design, 
are shown. 
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where the elementary PWL feedback function (Fig. 1) 
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contains the regions D0 and D+1 (D-1). General block dia-
gram corresponding to basic eqn. (1) is shown in Fig. 2. 
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Fig. 1. Simple memoryless PWL feedback function. 

1. Introduction  The dynamical behavior of this system is determined by 
two characteristic polynomials associated to the individual 
regions, i.e. In the recent papers [1], [2], some new results in the 

field of linear and piecewise-linear (PWL) dynamical 
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These two results give a natural possibility to convey 
optimized properties of the autonomous PWL system to 
transfer function of the linear non-autonomous system, i.e. 
to obtain the new optimized design procedure for linear 
systems. As an examples two typical systems with complex 
conjugate poles and zeros of the corresponding transfer 
function, i.e. the second-order band-reject and all-pass 
filter, are introduced. 

where 1 is the unity matrix. Their roots represent the 
eigenvalues of the corresponding state matrices and their 
coefficients are the so-called equivalent eigenvalue para-
meters [4], [5]. 
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2. Relation between PWL Autonomous 
and Linear Non-Autonomous Dyna-
mical Systems 

Autonomous PWL systems of Class C [3], [4] can be 
described by the general state matrix form 

Fig. 2. General block diagram of an autonomous PWL dynami-
cal system described by eqn. (1). 
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Any non-autonomous linear system with single input 
(v variable) and single output (y variable) can be described 
by the general state matrix equations 
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Choosing w1 = 1, the other parameters are obtained as 
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The corresponding general block diagram is shown in 
Fig. 3. Using the Laplace transform the transfer function of 
the non-autonomous linear system is generally given [2] as 

and the complete state equations of the optimized second-
order PWL autonomous system can be written in the form 
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if the following conditions are valid 

where the parameters b2 and w2 are given by the formulas 
(11b,c). The corresponding integrator-based circuit block 
diagram, suitable as the prototype for the practical realiza-
tion, is shown in Fig. 4. 
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Fig. 3. General block diagram of a non-autonomous linear dy-
namical system described by eqns. (5) and (6). 

3. Optimized State Model of the  
2nd-Order Dynamical Systems 

3.1 PWL Autonomous System 
Considering the complex conjugate eigenvalues in the 

outer regions D+1, D-1  (ν1,2=ν’±jν’’) as well as in the inner 
region  D0  (µ1,2 = µ’±jµ’’), the optimized state matrices 
corresponding to the outer and inner regions can be chosen 
in simplified and decomposed complex form [3], [7], i.e. 

Fig. 4. Integrator-based circuit structure of the 2nd-order PWL 
state model with minimized sensitivities. 

3.2 Linear Non-Autonomous System 
Starting from optimized PWL autonomous system 

with complex conjugate eigenvalues, utilizing the condi-
tions (8), the complete optimized form of the state equa-
tions (5) and (6) for the corresponding linear system is 
obtained, i.e. 
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respectively. These state matrices can mutually be expres-
sed by the relation [4] 
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The corresponding transfer function (7) is (18a) The optimizing coefficient K in eqn. (9b) is expressed as 
the real root of the quadratic equation 
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that corresponds to general second-order form and the auxiliary parameter M is given in the form 
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where the parameters b2 and w2  can be expressed as 
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The corresponding integrator-based circuit block diagram, 
suitable as the prototype for the practical realization, is 
shown in Fig. 5. 
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Fig. 5. Integrator-based circuit structure of the 2nd-order linear 
state model with minimized sensitivities. 

4. Applications to 2nd-Order Filters 
with Optimized Sensitivities 

4.1 Band-Reject Filters 
As the first example the second-order band-reject fil-

ter with complex conjugate poles and imaginary conjugate 
zeros of the transfer function (18a) is introduced. Here the 
parameter Qz → ∞, i.e.  

Fig. 6. Zeros and poles of the 2nd-order band-reject filter. 
a)  ωz > ω0 ,   b)  ωz = ω0 ,   c)  ωz < ω0. 

The corresponding integrator-based circuit block diagram, 
suitable also as the prototype for the practical band-reject 
filter realization, is shown in Fig. 7. Its transfer function 
(18) has the following special form 
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as follows from eqns. (20a,b). It is well known that three 
different cases can exist as shown in Fig. 6, i.e. 
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c)   0ωω <z    - (Fig. 6c) . 

which corresponds to general form 
Then the complete optimized form of the state equations is 
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where the parameters  b2  and  w2   can be expressed as 
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Fig. 7. Integrator-based circuit structure of the 2nd-order band-
reject filter with minimized sensitivities. 

Typical magnitude characteristics in frequency domain for 
all three relations between ω0 and ωz (Fig 6a, b, c) are in-
troduced in Fig. 8. 
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Fig. 9. Zeros and poles of the 2nd-order all-pass filter. 

The corresponding integrator-based circuit block 
diagram, suitable also as the prototype for the practical all-
pass filter realization, is shown in Fig. 10. Its transfer 
function (18) 
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Fig. 10. Integrator-based circuit structure of the 2nd-order all-pass 

filter with minimized sensitivities. 

has the following special form Fig. 8. Computer simulated magnitude characteristics of the 
optimized 2nd-order band-reject filter. 
a)  ωz > ω0 ,   b)  ωz = ω0 ,   c)  ωz < ω0. ( )
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4.2 All-Pass Filters which corresponds to general form 
As another example the second-order all-pass filter 

with symmetric complex conjugate poles and zeros of the 
transfer function (18) is introduced. Here, in accordance 
with Fig. 9, the complete state model can be described by 
using of the real and imaginary parts of zeros only (µ’>0, 
µ’’>0). Considering the root symmetry 
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The phase characteristic in frequency domain is introduced 
in Fig. 11. the complete optimized form of the state equations is 
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