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Abstract. Sensor arrays are often used for a signal sep-
aration from noises using the information about the direc-
tion of arrival. The aim of this paper is to analyze Frost’s
beamformer with respect to the speech preprocessing for the
hearing impaired people. The frequency response of the sys-
tem including the background noise attenuation are derived
as functions of the direction of arrival. The derivation sup-
poses a uniform linear array of sensors and plane waves. It
is shown that the number of possible configurations can be
decreased by using some symmetries. The impact of the used
algorithm constraint on the frequency response and subse-
quently on the directional noise suppression is derived ana-
lytically.
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1. Introduction
This article deals with the application of Frost’s beam-

former for the background noise reduction. Frost’s beam-
former belongs to the broad field of beamforming systems,
see. e.g. [7], [8], [9]. The application of this beamform-
ing system discussed in this paper is the speech preprocess-
ing for hearing impaired people. Other possible applica-
tions of this system can be speech processing for conferenc-
ing and a mobile telephony (direct sequence CDMA) [1],
where an array of sensors helps to discriminate between sig-
nal and noises sources. For example, a hearing impaired per-
son using a small microphone array mounted on glasses is
able to discriminate between different speakers. In these ap-
plications the broadband rather than narrowband input sig-
nals should be assumed. Thus the frequency response and
SNRE (Signal to Noise Ratio Enhancement) evaluated over
the whole frequency band have to be used.

The following restrictions about an environment, a ge-
ometry of array and input signals are made.

• In order to obtain the frequency response easily the
environment should be homogeneous, isotropic, loss-
less, nondispersive with respect to the wave propaga-
tion (phase) velocity.

• The array of sensors are assumed to be a linear with
uniformly spaced sensors. Sensors are assumed to have
omnidirectional characteristics.

• Both the directional signals and noises are assumed to
propagate with the plane wave front. This assumption
is not too restrictive because spherical waves generated
in a far field from the array can be approximated with
plane waves.

• Noises are supposed to be either directional (forming
the plane wave - see preceding item) or uncorrelated
between sensors.

• Frequency response is derived under assumption of lin-
earity and time invariance - LTI (no coefficients update)
of the filter.

The paper is organized as follows. In section 2 Frost’s
beamformer is described including a linear constraint. In
section 3 its frequency response for a plane wave input is
derived. In section 4 two symmetries of configurations are
proved. In section 5 properties of the frequency response
caused by the constraint are discussed. In section 6 the influ-
ence of a noise uncorrelated between sensors and samples is
shown. Finally, the conclusion is given.

2. Frost’s Beamformer
Frost’s beamformer [2] (see Fig. 1a) consists of an

array withK sensors, where each sensor is followed by a
transversal filter withJ weights. The number of weights
is equal for all transversal filters. The sum of the filter
outputs is the beamformer output. Weights are updated by
Frost’s constrained least mean square (CLMS) algorithm
which minimizes the mean square error of the output sig-
nal while satisfying a constraint [2]. In order the input signal
s(t) (arriving to all sensors with the same delay) to be passed
without any distortion, the impulse response of the whole
system must be equal to the unit impulse. This impulse re-
sponse represents the constraint for the weights of all filters.
The whole system can be replaced by one transversal FIR
filter for the signals(t). The replacement is shown in Fig.
1b, wheref1, f2, . . . , fJ is the impulse response for the sig-
nal. Constraint equations (see Fig. 1b) can be written also in
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matrix form

W


1
1
...
1

 =


f1

f2

...
fJ

 , (1)

whereW stands for weight matrix with real elements

W =


w1 w2 . . . wK

wK+1 wK+2 . . . w2K

...
...

...
...

wJK−K+1 wJK−K+2 . . . wJK

 . (2)

To discuss the Frost’s beamformer behavior in details,
let us define some terms needed. The digitized input noisy
signalsxi[n], i = 1, 2, . . . , JK are formed by components
of both clean signals(t) and noisen(t). The vectorx̃[n]
represents noisy signals on taps, the vectorw consists of
weights value, the vectorF represents the constrained im-
pulse response and the matrixC will be used in constraint
formulation

x̃T [n] = [ x1[n] x2[n] . . . xJK [n] ],

wT = [ w1 w2 . . . wJK ],

FT = [ f1 f2 . . . fJ ],
C = [ c1 c2 . . . cJ ]. (3)

Elementsci are the column vectors of lengthJK with
(i− 1)K zeros followed byK ones and(J − i)K zeros

cT
i = [ 0 0 . . . 0︸ ︷︷ ︸

(i−1)K zeros

1 1 . . . 1︸ ︷︷ ︸
K ones

0 0 . . . 0︸ ︷︷ ︸
(J−i)K zeros

].

(4)
Now the problem of finding the optimum weight vec-
tor for a stationary signalwopt (Wiener solution) can be
formulated. The weight vector minimizingE[y2[n]] =
wT E[x̃[n]x̃[n]T ]w = wT Rxxw and satisfying the con-
straintCT w = F have to be found.Rxx stands for the
autocorrelation matrix. In [2] the method of Lagrange mul-
tipliers was used to obtain the Wiener solution

wopt = R−1
xx C(CT R−1

xx C)−1F (5)

and the adaptive CLMS algorithm

w[0] = f ,

w[n + 1] = P(w[n]− µy[n]x̃[n]) + f . (6)

The vectorf and the projection matrixP are defined as

f = C(CT C)−1F ,

P = E−C(CT C)−1CT . (7)

Positive scalarµ is a step-size parameter. The choice ofµ
is the tradeof between the convergence time and the missad-
justment of weights from Wiener solution. An easily com-
putable upper bound forµ is given byµ < 2/(3E[x̃T x̃]).
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Fig. 1. aFrost’s beamformer structure,b Frost’s beamformer
from s(t) view - constraint formulation

The convergence behavior and the choice ofµ is deeply dis-
cussed in [2].

The alternative form of equation (6) for the implemen-
tation is

wi[n + 1] = wi[n]− µy[n]xi[n]

− 1
K

(b i
K c+1)K∑

j=b i
K cK+1

(wj [n]− µy[n]xj [n]) +
fb i

K c+1

K
. (8)

3. Frequency Response Analysis
Now the frequency response for the LTI case (fixed

weights, fixed geometry, ...) and plane wave fronts will be
derived. Since there are digital filters behind sensors, it will
be more convenient for the analysis to replace the transfer
paths from the source to sensors by a discrete time model.
Thus the variablet will be replaced by thenTs, whereTs

is the sampling period used for filters behind sensors. The
main reason is to understand the constraint influence on the
system behavior.

Now the coordinate system used for the sources de-
scription will be given (see Fig. 2). Note that the origin is
placed in the center of the array andy-axis goes through all
the sensors of the array, which are spaced uniformly with the
distanced and are numbered from0 to K − 1. The sensors
are assumed to have omnidirectional characteristics. Due to
the rotation symmetry of the array (abouty-axis) every three-
dimensional scenario with arbitrary plane wave sources can
be described inx ∈< 0,+∞), y ∈ (−∞,+∞) half-plane
(signals at sensors will be the same). Thus without the loose
of generality only wave fronts generated by sources lying in
this half-plane and having normal vectors inxy-plane can be
considered. Let us assume one source generating a plane
wave with a waveformu(t). Because the normal vector of
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a wave front at the source lies inxy-plane, the whole wave
front is projected onto a single line (depicted by the thick line
labeled byu(t)). Thus for the source description it is suffi-
cient to give the positionr of the nearest point of this wave
front to the origin (note that the vectorr is perpendicular to
the wave front). It seems to be the most appropriate to ex-
pressr in polar coordinates by giving angleϕ ∈< −π

2 , π
2 >

and distancer ∈ R+. The distancer can be measured
using delay between the source and the center of the array
R = r

Tsv . The direction of arrival can be also measured
using delayC (in samples) between adjacent sensors.C
relates toϕ according to

C =
d sinϕ

Tsv
, (9)

whered denotes the distance between adjacent sensors,v the
speed of sound. Due to the assumed environment (homo-
geneous, isotropic, lossless, nondispersive)u(t) reaches the
sensorm with the delayTs[R + C(m− K−1

2 )] without any
distortion. Thus the frequency response (measured from the
source to a sensorm) is P̂m(ω) = e−jωTs[R+C(m−K−1

2 )],
whereω stands for the angular frequency. To obtain corre-
sponding frequency responsePm of the discrete time model
P̂m has to be restricted to the range(−ωs

2 , ωs

2 ) (antialiasing
filters must be placed behind sensors). Using the normalized
frequencyΘ = ωTs for ω ∈ (−ωs

2 , ωs

2 ) and the periodic
extension of the frequency interval we obtain

∀k ∈ Z,∀Θ ∈< −π, π >:

Pm(Θ + 2kπ) = e−jΘ[R+C(m−K−1
2 )]. (10)

It is convenient to use the normalized frequency when de-
scribing a digital system. This approach assures the inde-
pendence of the system description on a sample periodTs

(or on a sample frequencyfs = 1
Ts

). The frequency re-
sponse for the whole system (see Fig. 1a) can be derived
using frequency responses of transversal filters and (10)

∀k ∈ Z,∀Θ ∈< −π, π >: H(Θ + 2kπ) =

=
K−1∑
m=0

e−jΘ[R+C(m−K−1
2 )]

(
wm + wK+me−jΘ + . . .

+ wK(J−1)+me−j(J−1)Θ
)

=

= e−jΘRejΘC( K−1
2 )

·
[

1 e−jΘ . . . e−j(J−1)Θ
]
W


1
e−jCΘ

...
e−j(K−1)CΘ

 ,

(11)

where the matrixW is defined in (2). Now the power gain
AP will be derived for a system with the frequency response
given by (11). The input waveformu[n] of the system is as-
sumed to be the white stationary process with zero mean and
varianceσu. Let us defineAP as the ratio of expectations of

sensorK2

s.0

0

ϕ

x

sensorK − 1

r

d

∼ R

y

∼ |C|

u(t)

Fig. 2. Configuration used to derive frequency response (de-
picted for even number of sensors)

squared output and input

AP =
E[v2[n]]
E[u2[n]]

=

=
1
σ2

u

∞∑
k=−∞

∞∑
l=−∞

h[k]h[l]E[u[n− k]u[n− l]] =

=
∞∑

k=−∞

h2[k] =
1
2π

π∫
−π

|H(Θ)|2dΘ,

(12)

whereh[n] andv[n] are the impulse response of the system
and the system output respectively (Parceval’s theorem was
used in the last step). TheH(Θ) should be written in more
suitable form than (11) to proceed with the integration

∀Θ ∈< −π, π >: H(Θ) =
JK∑
i=1

wie
−jl(i)Θ. (13)

The l(i) is a new function expressing the delay connected
with the weightwi

1

l(i) = C
(
(i− 1)−Kb i− 1

K
c
)

+ b i− 1
K

c. (14)

We can continue with the integration of equation (12)

AP =
1
4π

∫ π

−π

(
H(Θ)H(Θ)∗ + (H(Θ)H(Θ)∗)∗

)
=

=
1
2π

JK∑
r=1

JK∑
s=1

wrws

∫ π

−π

cos([l(r)− l(s)]Θ)dΘ =

=
JK∑
r=1

JK∑
s=1

wrws
sin([l(r)− l(s)]π)

[l(r)− l(s)]π
.

(15)

4. Configurations
The verification of the system behavior by the simula-

tion cannot be carried out for all the possible configurations.
1An arbitrary sensor placement could be expressed by changingl(i) definition
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Thus the number of configurations have to be decreased.
This can be done by using some types of equivalences. The
most convenient choice seems to be the equivalence with re-
gard to generated output, because it seems to be invaluable
to simulate set of configurations giving the same output. Of
course, the precise definition depends on what we are inter-
ested in. Such the equivalence is moreover conditioned by
the equality of input signals usually. This means, the system
is considered to be a black box with inputs and one output.
Needed definitions will be introduced now.

Definition 1 The configuration is an ordered triplet of in-
put signals used, transfer functions from sources to sensors
(a function of an environment, a placement of sources and
sensors and generated wave fronts), the filter behind sensors
(the filter is described by the filter order and weight values,
filtration and weight update equations).

Definition 2 ConfigurationsK andK ′ are equivalentK ≡
K ′ if and only if K and K ′ having the same input signals
generate the same output∀n ∈ Z+ : y[n] = y′[n].

4.1 Equivalent Configurations with Different
Distance between Sensors

The frequency response from the plane wave source to
the chosen sensor (10) depends only on the delayC and
neither on the angleϕ nor on the distance between adja-
cent sensorsd. Consider the configurationK with the ad-
jacent sensor distanced, s plane wave sources with direc-
tions of arrival given by anglesϕ1, ϕ2, . . . ϕs leaving delays
C1, C2, . . . Cs. Let us construct the configurationK ′ from
K by changingd to d′ and choosingϕ′

1, ϕ
′
2, . . . ϕ

′
s under the

conditionC ′
1 = C1, C

′
2 = C2, . . . C

′
s = Cs. Thus the fre-

quency response (10) will be the same. Therefore the filter
behind sensors gets the same input and generates the same
output and consequentlyK ≡ K ′ according Def. 2. But
how do we choseϕ′

i in order toCi remain the same? Equa-

tion (9) must hold for suchϕi: Ci = d′ sin ϕ′i
Tsv . Sinceϕi is

restricted to< −π
2 , π

2 >, preceding relation betweenCi and
ϕ′

i can be rewritten in the form

ϕ′
i = arcsin

vCiTs

d′
i = 1, 2, . . . s. (16)

4.2 Symmetry of Filters behind Sensors

Consider two configurationsK, K ′ which are identical
except for directions of arrival of plane wavesϕ′

1 = −ϕ1,
ϕ′

2 = −ϕ2, . . . ϕ′
s = −ϕs. Thus from (9)C ′

1 = −C1,
C ′

2 = −C2, . . . C ′
s = −Cs. Then equation (10) must hold

for spectra of waveforms on sensors

∀k ∈ Z,∀Θ ∈< −π, π >: XK−1−m(Θ + 2kπ) =

=
s∑

i=1

e−jΘCi(K−1−m)ejΘCi
K−1

2 e−jΘRiUi(Θ)

=
s∑

i=1

e−jΘ(−Ci)mejΘ(−Ci)
K−1

2 e−jΘRiUi(Θ)

= X ′
m(Θ + 2kπ).

(17)

It can be concluded, that waveforms on sensors are the same
except for the permutation

x′0[n] = xK−1[n], x′1[n] = xK−2[n], . . . x′K−1[n] = x0[n].
(18)

If a noise uncorrelated between sensors and samples is
present, its components on sensors should satisfy (18) in or-
der to waveforms on sensors satisfy (18).

If there is the pure summation behind sensors (delay
and sum beamformer), the permutation takes no effect due
to the commutativity of addition. Thus generated outputs
are the same in both configurations andK ≡ K ′ from Def.
2.

The case of the filter driven by Frost’s CLMS algorithm
will be discussed now. It can be stated after looking at the
filter structure Fig. 1a and considering the property (18),
that x̃′[n] is the permutated version of̃x[n] (at most after
J − 1 iterations). The permutation occurs within each col-
umn. The permutation vectorπ and projectionπ performing
that permutation are defined for easier manipulation

π = [π1, . . . πJK ]T = [K, K−1, . . . 1, 2K, 2K−1, . . . K+1

. . . JK, JK − 1, . . . JK −K + 1]T ,

π([x1 x2 . . . xJK ]T ) = [xπ1 xπ2 . . . xπJK
]T . (19)

Let us assume thatK and K ′ initial conditions fulfill the
described property

x̃′[0] = π(x̃[0]), w′[0] = π(w[0]). (20)

The usual initial conditions (zeroxi[0] values and weight
setupf ) satisfy (20), because these initial conditions have
the same values within each column. The observation made
aboutx̃′[n] andx̃[n] components now holds for every itera-
tion

∀n ∈ Z+ : x̃′[n] = π(x̃[n]). (21)

In order to showK ≡ K ′, the following conditions remain
to be proved

∀n ∈ Z+ : y′[n] = y[n], w′[n] = π(w[n]). (22)

The induction scheme will be followed here. The desired
equation for the weight vector is included in (20) forn = 0.
Using (20) following equation can be written for outputs

y′[0] = w′[0]T x̃′[0] = π(w[0]T )π(x̃[0]) = y[0]. (23)

The last equality follows from the fact that if components of
both vectors are equally permutated, then scalar multiplica-
tion leaves the same result due to the commutativity of addi-
tion. Now suppose that the property holds for somen ≥ 0

y′[n] = y[n], w′
i[n] = wπi

[n]. (24)
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Notice that any column number (from0 toJ−1) for a weight
wi could be expressed byb i

K c. The updating equation (8)
for a weightw′

i can be written

w′
i[n + 1] = w′

i[n]− µy′[n]x′i[n]

− 1
K

(b i
K c+1)K∑

j=b i
K cK+1

(w′
j [n]− µy′[n]x′j [n]) +

fb i
K c+1

K
. (25)

Using the substitution from (24) and (21) into (25) leads to
(notice thatb i

K c = bπi

K c)

w′
i[n + 1] = wπi

[n]− µy[n]xπi
[n]

− 1
K

(bπi
K c+1)K∑

j=bπi
K cK+1

(wπj
[n]− µy[n]xπj

[n]) +
fbπi

K c+1

K
.

(26)

Because the permutation occurs only within one column and
the summation goes through the whole column, summing
non permutated version leaves the same result

w′
i[n + 1] = wπi

[n]− µy[n]xπi
[n]

− 1
K

(bπi
K c+1)K∑

j=bπi
K cK+1

(wj [n]− µy[n]xj [n]) +
fbπi

K c+1

K

= wπi
[n + 1].

(27)

The last equality was obtained using (8). This can be rewrit-
ten using vector notation

w′[n + 1] = π(w[n + 1]). (28)

Using (21),(28) and following the same reasoning as in ob-
taining (23) the equation fory′[n + 1] can be written

y′[n + 1] = w′[n + 1]T x̃′[n + 1] =

= π(w[n + 1]T )π(x̃[n + 1]) = y[n + 1]. (29)

This completes the induction step. Equations (22) are proved
and through Def. 2K ≡ K ′.

The consequences of introduced properties are dis-
cussed now for the uniform linear array, plan waves, the filter
behind sensors driven by CLMS and the signal coming from
ϕ = 0◦. If one directional noise source is present (noise un-
correlated between sensors and samples may be present too),
then it is sufficient to simulate configurations with noise di-
rectionsϕ from 0◦ to 90◦, because other configurations are
equivalent with them due to 4.2 (see sect. Symmetry of Fil-
ters behind Sensors). Obtained results can be further gener-
alized to different distances between sensors according to 4.1
(see sect. Equivalent Configurations with Different Distance
between Sensors). If there are an arbitrary number of noise
sources, then it is sufficient to simulate system for directions
ϕ between−90◦ and90◦. Obtained results can be general-
ized by using 4.1 similarly as in previous case. Non zero
distancer (proportional to delayR) causes only superposi-
tion of the linear trend to the phase of frequency response
(see (11)). Thus it seems sometimes to be uninteresting to
consider differentr.

5. Constraint Influence
Now some properties of the frequency response for

plane wave inputs (11) will be discussed. If the elements of
the rightmost vector (11) became ones for someΘ, then the
resulting expression simplifies greatly. But for which nor-
malized frequencyΘ this simplification can be made? This
is satisfied for

Θ =
2π

C
l l ∈ Z, |l| ≤ bC

2
c. (30)

Now substitution from (1) to (11) forΘ given by (30) can be
made

H(
2π

C
l + 2kπ) =

= ej 2π
C lC( K−1

2 )e−j 2π
C lR

[
1 e−j 2π

C l . . . e−j 2π
C l(J−1)

]
·
[

f1 f2 . . . fJ

]T

= ej 2π
C l(C(K−1

2 )−R)
J−1∑
i=0

fi+1e
−j 2π

C li l ∈ Z, |l| ≤ bC
2
c.

(31)

If fi is the unit impulse, then this expression further simpli-
fies to

H(
2π

C
l + 2kπ) = ej 2π

C l(C(K−1
2 )−R) l ∈ Z, |l| ≤ bC

2
c.

(32)
It can be concluded that due to the imposed constraint the
frequency response is fixed at some normalized frequen-
cies. These normalized frequencies are determined by the
direction C (30). Fig. 3 illustrates this for some direc-
tionsC when the unit impulse constraint is assumed (black
dots stands for fixed points). Using (30) it can be concluded
about normalized frequencies fixed by the constraint (assum-
ing one half period of frequency response):

1) The zero normalized frequency is always included.

2) Fixed normalized frequencies are uniformly spaced
with spaces2π

C . Thus asC increases the spaces be-
tween fixed normalized frequencies decreases.

3) The number of fixed normalized frequencies increases
with increasingC even.

The values of frequency response at these normalized fre-
quencies are determined by (31). Following can be noted:

4) The value of frequency response at zero normalized
frequency (l = 0) is the same as the value of frequency
response at zero normalized frequency for the signal
s(t) coming through the path with impulse responsefi.

5) The unit impulse constraint causes all magnitudes of
fixed normalized frequencies to be one (32).

If the signal should be passed without any distortion
then the unit impulse constraint is the most convenient
choice. Assume that the plane wave of the white stationary
noise is arriving from the directionC. Then the output power
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minimization could occur only at bands excluding fixed nor-
malized frequencies. This leads to sharp local maxima at
these normalized frequencies (see Fig. 3, dashed curves).
Thus the power gain for the white stationary noise is almost
determined by the number of these maxima. Therefore the
dependence of the power gain on the directionC is similar
to the stair function where the rapid increasing occurs atC
even (see item3)). The existence of local maxima has also
the impact onSNRE (Signal to Noise Ratio Enhancement)
which therefore falls with everyC even (see Fig. 4). It can
be concluded that the delay range should be restricted toC
between 0 and 2 samples.

In the case of an input colour noise the situation is
more complicated. The behavior of the system depends, on
whether the noise spectrum hits or miss the normalized fre-
quencies fixed by the constraint. In general, the delay range
should be restricted similarly as in the previous case, because
there is only the zero normalized frequency to hit (see Tab.
1 for examples). The car noise is the worst example. Most
power of its spectra is spread around the zero normalized
frequency, which is fixed by the unit impulse constraint to
one (see5)), thus most of the noise passes through the sys-
tem. It motivates us to abandon the unit impulse constraint
and turn rather to the high-pass constraint. However it ex-
cludes the zero normalized frequency from the signal spec-
trum and causes some distortion, it fixes the frequency re-
sponse at the zero normalized frequency to zero value for
directional noises according4). If some distortion is present
in the signals(t) (due to the small length of transversal fil-
ters) it could be equalized by a subsequent filter. But this
equalization must be done carefully, because this subsequent
filtration affects the noise too. The proposed frequency re-
sponse of Frost’s beamformer for the signal, the equalization
filter and the resulting frequency response, respectively, are
shown in Fig. 9. Results for this constraint are summarized
also in Tab. 1. The choice of the frequency response for the
signal assuming Griffiths-Jim beamformer [3] is discussed
also in [4], leading to the same result.

The examples in Tab. 1 are obtained by simulating fol-
lowing configuration (The same array and filter setup was
used to obtain curves in Fig. 4). The array consists of
three uniformly spaced sensors with the adjacent sensor dis-
tanced = 76mm ( the sound speedv = 330ms−1). The
noise arrives from the directionϕ = 30◦, which corresponds
to delayC = 0.92. The adaptive filter driven by Frost’s
CLMS algorithm used behind sensors has the convergence
constantµ = 0.001, 63 weights and the sampling frequency
fs = 8000Hz. A speech (words: ”0,1,0,1”) is used as the
input signal. Three types of input noise are used (see Tab.
1). Input waveforms are scaled to have the unit average
power. Therefore the globalSNR is 0dB. The steady state
SSNRE is computed from last ”0,1” segments by time av-
eraging from one realization. The length of used waveforms
is 2.47 s. The case of the white stationary noise and the unit
impulse constraint is further illustrated by showing the sig-
nal and the noise vs. time in Fig. 5a, SNRE vs. time in
Fig. 5b, and spectrograms Fig. 6. The magnitude frequency
response and the power gain for the white stationary noise
vs. the direction of arrival are shown in Fig. 7 and Fig. 8.

1

0

Θ

π

C = 0.9|H(Θ)|

0

C = 2

π

|H(Θ)|
1

Θ
2π
30

C = 3

π

|H(Θ)|
1

Θ

Fig. 3. Impact of constraint on frequency response - examples
for different C, unit impulse constraint is assumed,
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Fig. 4. SNRE in dependence on directionC for unit im-
pulse constraint and zero mean white stationary unit
variance stochastic processes used for both signal and
noise
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Tab. 1 Reached frequency responses and s.s.SNRE for
some directional noises arriving from direction (de-
lay) C = 0.9 [samples] and constraint type.
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a

b
Fig. 5. aSignals vs. time (desired speech - light gray, white

stationary noise - dark gray),b SNRE vs. time
(SNRE in each segment is shown)

a

b

c
Fig. 6. Spectrograms:a desired speech,b mixture on sensor,

c filter output

Fig. 7. Magnitude frequency response on direction for
weights sampled at time instant 1.75 s. Darker color
corresponds to lower magnitude. Directions of desired
signal and noise are labeled sig1 and sig2 respectively
and marked with vertical lines.

Fig. 8. Power gain on direction for weights sampled at time
instant 1.75 s. Directions of desired signal and noise
are labeled sig1 and sig2 respectively and marked with
rays.

Fig. 9. Frequency response for: desired signal (constraint) -
dotted, equalization filter - dashed, result - solid



8 M. ŠTRUPL, P. SOVKA, ANALYSIS AND SIMULATION OF FROST’S BEAMFORMER

They are computed from weights using (11) and (15) sam-
pled at the time instant1.75 s (after the convergence is
reached). The decreasing of the system gain close to the
noise direction is evident in both cases.

6. Noise Uncorrelated between Sen-
sors and Samples

This section deals with the influence of the noise un-
correlated between sensors and the samples on the system.
Noise moments are assumed to be the same across both sam-
ples (time stationarity) and sensors (spatial stationarity). The
following trend can be observed. As the this type of noise
dominates against the directional one, the weights approach
to the initial ones. This could be clarified by finding the
Wiener solution. The autocorrelation matrix takes the form
Rxx = σ2

oE, whereσ2
o denotes the variance of the this un-

correlated noise. Using (7) the Wiener solution (5) takes the
following form

wopt = (σ2
oE)−1C

(
CT

(
σ2

oE
)−1

C
)−1

F =

= C(CT C)−1F = f . (33)

Note thatf stands for the initial weight vector. Thus it can
be concluded that the adaptation process takes no effect and
the filter remains in the initial state. The noise power at the
output is then

E[y2[n]] = wT
optRxxwopt = fT σ2

oEf =

σ2
oFT [(CT C)−1]TF = σ2

oFT [(KE)−1]TF =
σ2

o

K

J∑
i=1

f2
i .

(34)

While the unit impulse constraint gives the power gain for
the signalAPs = 1, the power gain for the noise is

APn =
E[y2[n]]

σ2
o

=
1
K

(35)

andSNRE
SNRE =

APs

APn
= K. (36)

Thus for the unit impulse constraint,SNRE equals to the
number of sensors used. It is the same as for the delay and
sum beamformer. It is not so surprising, because the initial
weightsf for the unit impulse constraint are non zero only in
one column and their values are equal. In order to compare
theSNRE (for the dominating uncorrelated noise between
sensors and samples) with results summarized in Tab. 1 (for
the directional noise), the equation (36) must be evaluated
for the same number of sensorsK = 3. This evaluation
yields4.8 dB.

7. Estimating SNRE
The estimation ofSNRE computed directly from

waveforms require many realizations to be sufficiently

smooth. In the case of limited small number of signal re-
alizations the batch or recursive estimates can be used with
the assumption of ergodicity. But what one can do when only
one realization is at hand (e.g. speech), and the use of men-
tioned estimates are rather devastating to give readable re-
sults? In this paragraph one alternative method is described
which is derived under following assumptions:

1) The system under consideration is Frost’s beamformer
driven by CLMS algorithm with the unit impulse con-
straint so the power gain for the signal isAPs[n] = 1.

2) Input noises are mutually independent white stationary
noises.

3) The current effective window of input noises (see be-
low) is independent on current weights representing the
instantaneous impulse responses.

Of course non-LTI system has not any impulse response in
general. But something like the impulse response can be as-
signed to each iteration. The current output sample is then
computed by multiplying input waveform with current im-
pulse response. Assumption3) means that the effective win-
dow of the input waveform which goes into the multiplica-
tion is independent on the current impulse response. This is
called the independence assumption and is used for example
in [5] for LMS MSE derivation. Reasoning behind this is as
follows. When the step size parameterµ is very small then
current weights are almost determined by past input sam-
ples and the current effective window has negligible impact.
When the input samples are mutually independent then the
current effective window can be thought to be independent
of current weights (or current impulse response).

Let us assumeN directional noisesn11[n], . . . ,n1N [n]
at inputs and noise uncorrelated between sensors and
samples n1o[n]. Let standard deviations of these
noises areσ11, . . . ,σ1N , σ1o, impulse responsesh1n[k],
. . . ,hNn[k], hon[k] (for iterationn) and power gainsAP1[n],
. . . ,APN [n],APo[n] (see (15), (35) ) for iterationn. Let us
define the sum of noises at the inputn1[n] and the sum of
the noises at the outputn2[n].

n1[n] =
N∑

i=1

n1i[n] + n1o[n] (37)

n2[n] =
N∑

i=1

∞∑
ki=−∞

hin[ki]n1i[n− ki]+

∞∑
ko=−∞

hon[ko]n1o[n− ko] (38)

Let APn[n] = E[n2
2[n]]

E[n2
1[n]]

to be the power gain for noises in

iterationn. And finally let us define the currentSNRE [n]

SNRE [n] =
APs[n]
APn[n]

=
E[n2

1[n]]
E[n2

2[n]]
=

∑N
i=1 σ2

1i + σ2
1o

E[n2
2[n]]

.

(39)
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During the last two steps in (39) the assumptions1), 2) and
equation (37) were used. When assumptions3), 2) and equa-
tion (38) are used for the denominator of (39) it can be writ-
ten

E[n2
2[n]] = E

[
(

N∑
i=1

∞∑
ki=−∞

hin[ki]n1i[n− ki]+

∞∑
ko=−∞

hon[ko]n1o[n− ko])2
]

=

=
N∑

i=1

E
[ ∞∑
ki=−∞

h2
in[ki]

]
σ2

i + E
[ ∞∑
ko=−∞

h2
on[ko]

]
σ2

1o

=
N∑

i=1

E
[
AP i[n]

]
σ2

i + E
[
APo[n]

]
σ2

1o.

(40)

The substitution (40) to (39) gives

SNRE [n] =
∑N

i=1 σ2
1i + σ2

1o∑N
i=1 E

[
AP i[n]

]
σ2

i + E
[
APo[n]

]
σ2

1o

.

(41)

Because weights are smoothed by CLMS itself and
second order moments of noises can be computed by time
averaging due to their ergodicity, this estimate is much more
smoother then previous mentioned batch and recursive es-
timates. The described approach was used to obtain time
dependence ofSNRE in Fig. 5.

8. Conclusion
Uniform linear arrays and plane waves propagating in

homogeneous, isotropic lossless nondispersive environment
were assumed throughout this paper.

Frequency response (11) and white stationary process
power gain (15) were derived as functions of the direction of
arrival.

Some symmetries were shown using the configuration
concept. It was found (4.2) that for the desired signal, one
directional noise (noise uncorrelated between sensors and
samples may be also present) and Frost’s CLMS algorithm
behind sensors, it is sufficient to consider noise directions
ϕ between0◦ and90◦. For greater number of directional
noises it is sufficient to consider noise directionsϕ between
−90◦ and90◦. Obtained results can be further extended to
different adjacent sensor distances using (4.1).

The impact of constraints for the directional noise sup-
pression was described. Discussion of this issue leads to the
restriction of possible delaysC between adjacent sensors to
the delay range between0 and2 samples. This can be done
by restricting possible direction of arrivalϕ or by changing
adjacent sensor distanced according to (9). The choice of
the constraint was also discussed. The high-pass constraint
seems to fit most applications.

Bad performance for noise uncorrelated between sen-

sors and samples was clarified by finding the Wiener solu-
tion giving the initial weights. This means that when the
noise uncorrelated between sensors and samples dominates
then the filter remains in its initial state. Thus adaptation
process takes no effect.

The problem of estimatingSNRE was considered and
the particular solution was given (41).
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