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Abstract. In the paper, a reduction algorithm for
transforming the general eigenvalue problem to the
standard one is presented for both classical full-matrix
methods and a sparse-matrix technique appropriate for
large-scale circuits. An optimal pivoting strategy for the
two methods is proposed to increase the precision of the
computations.

The accuracy of the algorithms is furthermore increased
using longer numerical data. First, a ORQJ�GRXEOH precision
sparse algorithm is compared with the GRXEOH precision
sparse and full-matrix ones. Finally, the application of a
suitable multiple-precision arithmetic library is evaluated.
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1. Introduction
The poles-zeros analysis is indisputably among the

most important parts of design of electronic circuits.
However, the programs of the PSpice family do not have
such algorithms implemented (the Spice3 and HSpice prog-
rams only have this capability). An original software tool
called CIA (Circuit Interactive Analyzer) is frequently used
for the poles-zeros analysis for this reason.

The poles-zeros analysis is known to be very sensitive
to the numerical precision of algebraic operations during
the process. Consequently, many of the theoretically exact
methods fail, especially for large-scale circuits.

Two major types of improvements to these methods
are proposed here:

• one consists in a meticulous algorithm design
regarding the choice of pivots,

• and the other is based on using longer numerical data
types together with more precise arithmetic – either as
just fully utilizing the given hardware capabilities or
by applying a suitable multiple-precision arithmetic
library.
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Fig. 1. Final shapes of the matrices after the reduction.

2. Algorithms

2.1 Definition of Reduction Algorithms

A system of linear equations (or equations linearized
at an operating point) of a circuit can be written by means
of Laplace transformation

V3 4 ; <+ =( ) , (1)

where V denotes the Laplace operator, 3 4 are the matri-
ces associated with the dynamic static  parts of the model
derivatives, respectively, ;  is the vector of Laplace trans-
forms of circuit variables, and <  is the source vector.

The poles of all the transfer functions and the zeros of
a transfer function can be computed solving the equations
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where matrices 3 0M( )  and 4 LM( )  arise from the original ones
– the first by clearing Mth column and the second by replac-
ing Mth column by <  with all its elements cleared with the
exception of the element corresponding to the Lth source.

Solving the general eigenvalue problem defined by (2)
is more difficult than solving the standard one. Therefore, a
systematic reduction is applied during transforming (2) to
the standard form, which is shown in Fig. 1 (it is a variation
of the method in [1]). After the transformation, the deter-
minant can be computed in the classical way
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where QH[FK  is the total number of row and column
exchanges while reducing, and � is the unity matrix. The
operations that transform the matrix V3 4+  to the form
drawn above are a certain modification of Gauss elimina-
tion method. The only exception occurs when the matrix
3��  contains a nondiagonal element that is not reducible by
the diagonal elements of this matrix. In such cases, it is
necessary to multiply some row from the lower part of the
matrix by the V operator. It is equivalent to moving a row of
the 4��  matrix left. The nondiagonal element of the 3��

matrix can readily be reduced by means of the transferred
row. Note that the two products in the equation (3) may be
enormous for large-scale circuits and therefore only their
signs and logarithms may be stored.

2.2 Implementation of Reduction Algorithms

The reduction process is very difficult from the point
of view of numerical precision in the case of large-scale
systems. The matrices often contain elements of various
magnitudes. Therefore, a full pivoting is to be used for the
choice of the Nth key element
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however, the key element determined in the above way is
regarded to be zero if it is too small in comparison with the
greatest element of the Nth column
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εHLJHQ  is an important parameter of the reduction algorithm.
Inappropriately large value of this parameter causes ig-
noring some (real, in fact) poles or zeros, inappropriately
small value of the parameter causes computing superfluous
(spurious, in fact) poles or zeros (about 1015−  is
recommended).

The key elements determined in the upper and lower
parts of the matrices are used for the reduction of remaining
elements of the matrices if they are not too small
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εURX Q G��  is a second parameter of the algorithm. It prevents
the reduction of small elements that can arise because of
rounding errors. When such elements are reduced, the
number of nonzero elements of the matrices increases and
the total error increases too (about 1020−  is recommended).

The reduction algorithm is to be implemented using
the sparsity of the matrices 3 and 4. These matrices are
sparse enough already for not very complicated tasks.
However, application of the full pivoting is then very
difficult from the programming point of view. Therefore,
only partial pivoting must be used here – the Nth key
element is chosen from the rest of the Nth column of a
reduced matrix
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however, the key element determined in the above way is
regarded to be zero if it is too small in comparison with the
greatest element of the Nth row
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A final step for determining the poles and zeros of transfer
function is naturally computing the eigenvalues of the
matrix (i.e., solving the standard eigenvalue problem)

′ = − −4 3 4��
�

�� (10)

by the double-step QR algorithm with automatic shift of
origin [2, 5].

2.3 Design of Variable-Length Arithmetic

The arbitrary precision (variable-length) arithmetic
routines have been implemented in the Pascal language.
Since the design was made with portability in mind, the
ISO 7185 standard was strictly obeyed. In addition, only a
subset of the language common with Borland Pascal/
Delphi was used. Simplicity and clarity of the design
encouraged by the chosen programming language are con-
sidered to be major virtues. The variable-length natural
numbers representing the mantissa parts are implemented
by means of dynamically allocated linked lists rather than
arrays. This eliminates the danger of undesirable heap
fragmentation, which could otherwise cause allocation
failure before all available memory has been used. Only the
classical general algorithms described in [3] have been
employed for the four basic arithmetic operations. Since the
results of floating point operations are by principle appro-
ximate (no matter how long the mantissa has been chosen),
an optional mechanism has been added maintaining upper
estimates of the cumulated roundoff errors for each
variable. This can be useful whenever the information about
the guaranteed accuracy of obtained results is needed. No
special optimization to enhance the execution speed has yet
been performed. This is supposed to be part of the
prospective next stage of development, finally resulting in
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partial or complete conversion of the routines into the
assembly language, utilizing all technical capabilities of the
given hardware.

The implementation of the variable-length floating
point (9/)ORDWLQJ3RLQW) arithmetic is part of a more
extensive library of routines, covering a hierarchy of other
variable-length numerical types: natural (or nonnegative
integer) 9/1DWXUDO, integer 9/,QWHJHU, rational 9/5DWLRQDO
and complex 9/&RPSOH[. All these types adopt the same
philosophy of use: every variable of a particular type ;

(standing for any of 1, ,, 5, or )) has first to be allocated by
the 9/;1HZ procedure. If it is to be used as an input to an
arithmetic operation (9/;$GG, 9/;6XE, 9/;0XO, or
9/;'LY), it needs to be initialized by 9/;,QLW. By the end of
a computation, all used variables should be deallocated by
9/;'LVSRVH. Values can be converted from/into the
standard UHDO type by 9/;)URP5HDO and 9/;7R5HDO, and
read from / written into text files by 9/;5HDG and
9/;:ULWH, respectively (except the 9/)5HDG routine, which
has yet to be implemented). For the programmer’s
convenience, all arithmetic procedures are designed to
allow for variables to be given simultaneously as input as
well as output parameters.

Calling Pascal procedures from inside C code of the
CIA algorithms has been made possible using the GNU
family of compilers (specifically, its DJGPP port for
MS-DOS), for GNU Pascal has types and calling conven-
tions compatible with those of GNU C.

3. Results

3.1 Improvement of Sparse Mode With
“ ORQJ�GRXEOH” Arithmetic

Let us discuss an AB-class power operational ampli-
fier in Fig. 3 for which reduced [4, 6] (cuts “similar”
poles/zeros) poles-zeros configuration is presented in
Fig. 2. It is a very suitable example for checking the pre-
cision of the sparse mode of reduction.

In general, the full-matrix version of the reduction
algorithm seems to work sufficiently. However, its nume-
rical precision is still inadequate for a certain class of tasks
solved by the sparse-matrix one. For that reason, a ORQJ

GRXEOH (≥10 bytes) version of the sparse-matrix reduction
has been developed.

In Tab. 1, a comparison between sparse-matrix GRXEOH

and sparse-matrix ORQJ� GRXEOH reductions is performed.
Considering the results with 1024bit-mantissa variable-
length arithmetic (see the following subsection) to be cor-
rect, the incorrect digits are marked by “strikethrough”. As
observed, the poles have been computed quite precisely.
However, the accuracy of the computation of zeros is
considerably worse – it is caused by the difference between
the smallest and largest pole/zero magnitudes, respectively.

For the multiplying constant of transfer function, the
inaccuracy is similar. All the results indicate that the ORQJ

GRXEOH sparse-matrix reduction introduces a welcome im-
provement. Still, the results are only correct to three de-
cimal places. The results with the full-matrix reduction are
more precise with the exception of zero at the origin (the
full-matrix algorithms do not implement the special struc-
ture of matrices used for a “smart” elimination of zeros at
the origin by the sparse algorithm). However, the full-
matrix reduction cannot be used for large-scale circuits.

 Therefore, the application of unlimited- or variable-
length arithmetic is expected to perform robust and
accurate analyses.

3.2 Improvement of Sparse Mode With
Variable-Length Arithmetic

Results obtained with the sparse-matrix reduction
algorithm rewritten to call the variable-length arithmetic
routines are presented in Tab. 2.

The parameter F was chosen to be 1023− , i.e., the
same as in the ORQJ�GRXEOH computation, to allow to compare
the corresponding results.

With mantissa length limited to 64 bits, which is the
same length as in the ORQJ�GRXEOH type (Extended Precision
of IEEE 754), the achieved precision of results is basically
the same as with ORQJ�GRXEOH. A slight tendency towards the
correct values is already visible in the variable-length case
due to more correct rounding strategy used.

All the poles and zeros obtained with 128bit mantissa
are already correct to 6 decimal places. The results file
differs from the ones for longer mantissas (256, 512 and
1024 bits were tried) only in the ordering of zeros done by
the procedure solving the standard eigenvalue problem. All
the poles and zeros for 256 bits and more came out the same
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Fig. 2. Reduced poles-zeros ( all divided by 2 π )  diagram of the
linearized AB-class power operational amplifier.
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Fig. 3. AB-class power operational amplifier with wide spread poles and zeros on which all the reduction techniques have been compared.

&UXFLDO�HOHPHQWV�RI�WUDQVIHU

IXQFWLRQ�UHJDUGLQJ�H[DFWQHVV

)XOO�PDWUL[�DOJRULWKP�ZLWK

F
HLJHQ
 �������F

URXQG
 �����

6SDUVH�PDWUL[�GRXEOH

DOJRULWKP�ZLWK�F� �����
6SDUVH�PDWUL[�ORQJ�GRXEOH

DOJRULWKP�ZLWK�F� �����

=HUR�ZKLFK�VKRXOG�EH���+] ����������q������+] ��+] ��+]

6PDOOHVW�SROH�E\�PDJQLWXGH ���������+] ���������+] ���������+]

%LJJHVW�SROH�E\�PDJQLWXGH ���������q������+] ���������q������+] ���������q������+]

v6PDOOHVWw�]HUR�E\�PDJQLWXGH �����������+] �����������+] �����������+]

%LJJHVW�]HUR�E\�PDJQLWXGH ���������q������+] ���������q������+] ���������q������+]

&RQVW��RI�WUDQVIHU�IXQFWLRQ �������� ������� ��������

Tab. 1. Comparison of the crucial elements of the amplifier transfer function obtained using fixed-length compiler’s arithmetic procedures. The
control parameters have been optimized so that the results be closest to those obtained with 1024bit-mantissa variable-length arithmetic.
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Tab. 2. Comparison of the same transfer function elements obtained using suggested variable-length arithmetic procedures. The results for the
128bit and 256bit mantissas are equal regarding the first six valid digits (the poles and zeros are only ordered in slightly different ways).
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to 6 decimal places and in the same order of listing in the
results file. The duration of the computations did not
exceed approximately ten minutes even for the 1024-bit
mantissa length.

Changing the F value was also tried for mantissas of
256 and 1024 bits. For 256 bits, it turned out to be possible
to use its value as tiny as 10150−  without any change in the
highest six digits and order in the results file. With 1024
bits, this limit even drops below 10320− .

Experiments with the rational “unlimited-precision”
arithmetic were also carried out; the computing complexity,
however, turned out to be too high for the present example.
The poles computation was interrupted after about three
days, when only about a half of the approximate total of
200,000 arithmetic operations had been finished. And since
the duration of multiplications and divisions increases with
about the square of operand length, it is virtually impossible
to estimate the time needed for the second hundred
thousand arithmetic operations.

The extent of numerical misconditioning of this task
can well be illustrated by the fact that during the carried-out
part of the “unlimited-precision” computations, subtractions
of different values equal to even more than 30 decimal
digits were performed.

4. Conclusion
As expected, using the ORQJ� GRXEOH version of the

sparse-matrix reduction provides an unquestionable im-
provement of the poles-zeros precision. However, there
exist some examples for which even the ORQJ� GRXEOH

precision is insufficient. In those cases, using the variable-
length arithmetic is necessary, which can thus be
considered to be the ultimate solution of the poles-zeros
precision problem.
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