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Abstract. The contribution describes the design, optimiza-
tion and verification of the off-line single-trial movement 
classification system. Four types of movements are used for 
the classification: the right index finger extension vs. fle-
xion as well as the right shoulder (proximal) vs. right index 
finger (distal) movement. The classification system utilizes 
hidden information stored in the characteristic shapes of 
human brain activity (EEG signal). The great variability of 
EEG potentials requires using of context information and 
hence the classifier based on Hidden Markov Models 
(HMM). The suitable parameterization, model structure as 
well as training and classification process are suggested 
on the base of spectral analysis results and experience with 
the speech recognition. The training and the classification 
are performed with the disjoint sets of EEG realizations. 
Classification experiments are performed with 10 random-
ly chosen sets of EEG realizations. 

The final average score of the distal/proximal movement 
classification is 80%; the standard deviation of classifica-
tion results is 9%. The classification of the extension / fle-
xion gives comparable results. 

Keywords 
Hidden Markov models, EEG classification, HTK, 
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1. Introduction 
In the former article the cross-language experiments 

using the HMM paradigm was described. This text is de-
voted to the using of HMM for the EEG signal classifica-
tion. The motivation of this work is the recognition of the 
right index finger distal movement from the right shoulder 
proximal movement by means of EEG. 

The EEG signal classification can be found in two 
main following areas. 

• The EEG classification is one important part of the 
brain computer interface (BCI) - user interface which 
allows to work with computer and thus to communi-
cate even for the disabled person (like those with the 
spinal cord injury, etc.). Detailed overview of nowa-

days used brain computer interface can be found in 
[1] or [15]. The detailed comparison of the existing 
BCI systems can be found in [18]. 

• The EEG classification verifying physiology hypothe-
ses about the brain can be also found in the field of 
physiology. 

The classification results reached with the HMM approach 
are better than those reached with neural networks; see [2]. 

Compared with other existing systems ([2], [11], [12], 
[14], [15], [17]) this contribution tries to classify the 
movements related to one side of the body. This task is 
much more complicated. These one-side movements are 
harder to classify than differentiating only the left/right 
hand movement. Also, compared with the existing ap-
proaches the used HMM architecture is exploited to the 
physical reality mapping (see [3]). 

First, the analysis of EEG signal properties with the 
focus on the choice of the suitable classification parameters 
will be given. 

2. EEG Properties 
The analysis of EEG signal properties with regards to 

the usage for the classification consists of the following 
steps: 

• Electrode selection, 
• Spatial pre-filtration, 
• Choice of relevant parameters, 
• Optimization of parameterization procedure and mo-

del construction, 
• Optimization of classification procedure. 

All these problems will be described in following para-
graphs. 

2.1 Electrode Selection 
EEG is not only a function of time; it depends as well 

on the sensor position on the scalp of the experimental 
person. This is caused by the localization of the brain ac-
tivity. The recognition score thus depends on the electrode 
the processed signal is recorded from. 
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The anatomy says that the best way is to use the sig-
nal recorded from electrodes 25,26 and 27 (near the elec-
trode C3 - sensoric/motor cortex). Despite of this fact the 
analysis of the recognition score/the electrode selection 
dependence was made. Its results proved the former state-
ment (see [3]). 

It was shown that the selection of the electrode has 
the important influence on the recognition score. Nowa-
days, the optimal selection is still an open issue (for more 
details, see Conclusion). Moreover, distal and proximal 
movements are generated in slightly different locations of 
the brain; the coverage of both centers by one electrode is 
not perfect. Hence one of the signals may be more 
dumped/distorted than the second. The speech signal clas-
sification and EEG signal classification differ in this point. 

2.2 Spatial Prefiltration 
The recorded raw EEG is spatially filtered prior fur-

ther processing to enhance the localized brain activity; this 
can be accomplished by the high-pass spatial-frequency 
filter. For our experiments the prefiltration by small Lapla-
cian was used ([16], [13], [10]) owing to its good filtration 
properties. The attention must be paid to the comparison of 
EEG among different persons - the quality of Laplacian 
relies on the ratio of brain and skull conductivities. 

2.3 Spectral Analysis 
The key differences between the realizations of both 

movements are in the time development of their spectra. 
The movement is in the spectral domain localized to 
approx. 10-23 Hz band (µ and β - see e.g. [6], [8] and 
[18]). Unfortunately, the accurate band selection is de-
pendent on the person tested. This problem can be over-
come by using the whole 0-40 Hz band with suppressed 
DC component. This solution was proved to be quite satis-
factory and allowing exploiting the information contained 
in the EEG event-related potentials shape as well. This 
band will be called as “baseband” in the next text. 

In the time development of the spectrum the two 
characteristic phenomena can be found. These two phe-
nomena are located around the time of the movement. 

Event-related synchronization (ERS) is a rise of 
power in the baseband after the movement (see Fig. 1). 
There is typically a greater synchronization with the proxi-
mal movement than with the distal one and it occurs on the 
ypsilateral scalp side to the movement. 

Event-related desynchronization (ERD) is called a 
fall of power in spectral bands located at and closely round 
the time of the movement (see again Fig. 1). Stronger de-
synchronization accompanies distal than proximal move-
ment and it occurs on contralateral side to the movement. 

The time development of the average magnitude 
spectra for the chosen person and electrode is illustrated in 

Fig. 2. The spectrum is normalized, e.g. each spectral line 
magnitude is based to the mean magnitude of the same line 
computed from frames 1-15. To be more precisely: Let 
Xp

k[i]  is the spectral line magnitude from frame k , for mo-
vement p , of frequency i. 

 
Fig. 1. Person 4, electrode 25, 10-23 Hz band. Vertical thin line 

denotes the time instant of the movement; D is the distal, 
P proximal movement. Total power in the band is de-
picted here. Around the time instant of movement strong 
desynchronization takes place, immediately after the 
movement is obvious synchronization (see [8]) 

Then the corresponding value drawn in the graph is com-
puted as follows: 
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The analysis further shows a great variability of spectral 
shapes between experimental persons. It was proved that 
the models trained to one person are so far not able to 
classify EEG realizations recorded from other person. 

2.4 Selection of Parameterization 
The analysis of the classification problem (see [3]) 

confirmed that the reasonable choice of HMM parameters 
is the linear spectrum1. Thus (as mentioned before) the 
spectral lines in the frequency range 0-40 Hz are used. 
Performed experiments showed that the reached recogni-
tion score is not very sensitive to the choice of particular 
frequency band. The higher band (above 40 Hz) is not 
recommended to use because it is heavily influenced by 
strong noises (power grid frequencies, etc.). 

3. Parameters of HMM Based Models 
Two different movements are classified. Thus two 

models have to be used: one for the distal, the second one 
for the proximal movement. The movement realizations 

                                                           
1 Speech applications nearly don’t exploit this parameterization. 
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were stored in separated files - each realization had its own 
file. Thus the EEG classification problem can be thought to 
be the isolated word recognition problem. 

 
Fig. 2. Person 4, electrode 25, time development of the proximal 

movement base band. Vertical thin line denotes the time 
instant of the movement. Around the time instant of 
movement strong desynchronization takes place, imme-
diately after the movement is obvious synchronization. 
10-23 Hz band is emphasized by horizontal lines. 

 
Fig. 3. Mean values of the spectra extracted from the trained 

model states. States can be compared with the corre-
sponding phases in Fig. 1 - state 1 corresponds with 
phase I, state 2 with phase II, state 3 with III, 4 with IV. 

For the used model selection it is very important to 
have on mind the shapes depicted in Fig. 1. The whole time 
development of the spectrum can be divided into four 
phases as depicted there as well. Phases I and IV are the 
silence before and after the movement. Phase II is the de-
synchronization and III is the synchronization after the 
movement. Phases are in the sequential order - I - II - III - 
IV. As the best it was thus revealed the usage of the model 
architecture “left-to-right without skips” (it was already 
mentioned in the first part of the article). For the training 
phase it was supposed that the model states were trained 
just to the phases indicated in Fig. 1. 

The part of our work was the bunch of experiments 
targeted to the verification of thoughts mentioned above. 

Other numbers of the model states were investigated. Fi-
nally, the model with 4 emitting states gave the best results. 
Further, the contents of the trained model states were ana-
lyzed. It was shown, that even the preposition of the as-
signment of model states to the EEG time development was 
rightful (see again Fig. 1). The examples of the contents of 
all the emitting states for both trained models are shown in 
Fig. 4 and 3. In state 3 and 4 is a very well obvious fall and 
subsequent rise of power in the baseband. 

 
Fig. 4. Intervals ±3σ of the spectra extracted from trained model 

states. Again they can be compared against Fig.1 - state 1 
corresponds to phase I, etc. 

4. Parameterization Details 
Several system parameters were optimized during the 

parameterization phase. The most relevant parameters are 
supposed to be the following: 

• Frame length, 
• Frame step, 
• Frame weighting with the appropriate windowing 

function, 
• The kind of spectral lines probability distribution, 
• Source electrode location. 

4.1 Signal Segmentation 
As the best it appeared to use 512 samples long 

frames with 400 samples overlap. The suitable frame 
length depends on the signal stationarity. The value of 512 
samples was verified by experiments with the block esti-
mation of the signal power. This parameter determines the 
system frequency and time resolution. The sufficient time 
resolution is needed for determining the states I - IV. De-
creasing the frequency resolution also decreases the classi-
fication score. The reason is that the distinct states are not 
enough distinguishable as the result of the enormous spec-
tral bias. Experiments proved, that the optimal segment 
length is 1 second, which corresponds with 500 samples 
(fs=500 Hz ). Rounding to the nearest power of two due to 
used FFT algorithm resulted in 512 samples long frame. 
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To reach the desired time resolution as ensued from 
experiments it was necessary to use the short frame step 
and thus the relatively big segment overlap of 400 samples 
(800 msec). The resultant time resolution is then 200 msec. 
The details of all the experiments can be found in [3]. 

4.2 Spectral Weighting 
The impact of the spectral leakage on the classifica-

tion score was shown as negligible. The results of not-
weighted realizations classification did not differ signifi-
cantly from the results of classification of realizations 
which frames were weighted by Kaiser window (α=10 ). 

4.3 Source Electrode 
The influence of the electrode selection on the recog-

nition score was already mentioned. This dependence was 
especially obvious in the case of proximal and distal move-
ments - the responses accompanying the movement of 
shoulder are better observable in slightly different cortex 
area than those recorded during the right index finger 
movement. If the electrode nearer to one of these centers is 
chosen for data recording, some information coming from 
the other center is discarded (performed experiments de-
scribed in [3] proved this). The classification of the right 
index finger extension/flexion movements is easier from 
this point of view because both movements can be re-
corded in the same place. 

4.4 Spectral Lines Distribution 
The system used (see [4]) works in one mixture con-

figuration with normally distributed signals. Of course, 
spectral lines distribution is nearer to the logarithmic-nor-
mal than to the normal one. By means of X2 test the simi-
larity of real spectral lines distribution to both distributions 
mentioned above was verified. The results of experiments 
did not deny that any of these two distributions could be 
the good approximation. For the confirmation of this con-
clusion, one set of experiments with the presumption of 
logarithmic-normally distributed spectral lines was reali-
zed. The conversion of spectral line magnitudes was appli-
ed during the parameterization phase. The results were 
comparable to other experiments with no conversion. Hen-
ce no conversion was used anymore. Also that's why only 
one model mixture was used (in contrast to [2]). For details 
of the experiments performed see [3]. 

4.5 Experiments Evaluation 
The classification is a complicated statistical task. The 

experimental results are influenced especially by 
1. Properties of signal and parameterization used, 
2. Dividing the realizations between the training and 

testing set - it is necessary to have two disjoint sets. 

Due to the mentioned reasons it was necessary to repeat 
each experiment several times with various divisions of 

realizations between training and testing set and to interpret 
the results in a suitable way (for example to calculate the 
estimation of the classification score mean and standard 
deviation). For this reason a proprietary tool for the auto-
matic stochastic division of realizations to both sets was 
developed and every experiment was ten times repeated. 
 

pers. no. proximal movement 
 class score [%] 

distal movement 
 class score [%] 

2 76±16 89±6 

3 82±13 68±7 

4 59±11 76±5 

5 99±3 96±6 

6 87±6 76±9 

7 81±10 88±6 

8 59±7 73±6 

Tab. 1 The classification scores for all the experimental 
personae and for distal and proximal movement. 

5. Example Experiment 
As an example an easy experiment along with the 

classification results is presented (details see in [9], [7]). 

Parameterizations: 512 samples long frame, 400 
samples frame overlap, realizations recorded from elec-
trode 26, 7 experimental persons. 

Training and classification: models trained on the 
half of the experimental realizations, on the second half the 
classification score was measured (as was mentioned 
above). Each experiment was ten times repeated, the re-
sultant classification score was the average of particular 
values. 

Results: the distal movement classification score - 
80%, the proximal movement one - 76%. The standard 
deviation of the classification score was evaluated as 9%. 
For the reader's information, the classification results for 
all the experimental persons can be found in Tab. 1. 

6. Further Development 
The final aim of this work is to develop a real, usable, 

BCI system based on HMM. To reach this aim the follow-
ing steps have to be done. 

•  The evaluation of the time stability of the results; the 
classification score must not perish in time. 

• The enlargement of the training database must be per-
formed including new records and analysis of new 
kinds of movement. 

• The study of appropriate spatial filtration techniques 
is being conducted (small and large Laplacian, com-
mon average reference, ICA, PCA will be compared 
with regards to the reached classification score). 



RADIOENGINEERING, VOL. 12, NO. 3, SEPTEMBER 2003 55 

• Testing various parameterization techniques should 
be completed. The autoregressive modeling (in both 
types-batch or recursive processing) and lagged auto-
regressive modeling are tested. The parameterization 
suitability is now evaluated again due to the reached 
classification score. The more powerful statistical 
tests for the parameters choice will be applied. 

7. Conclusion 
In spite of using the simple algorithms the reached re-

sults are quite satisfactory. Nevertheless there are some 
problems left. One of them is the optimal electrode selec-
tion for the given person. The problem is also the individu-
ality of person causing great differences between the re-
corded brain activities of various people. These differences 
nowadays obstruct the possibility of the model generaliza-
tion. It means the usage of the models trained on a large set 
of persons for the movement classification of another per-
son not included in the training set. Nowadays used system 
is able to classify only movements of the person whose 
EEG was used for training. At this point EEG classification 
differs from the speech classification. 

The developed system posses some advantages com-
paring with other BCI systems ([2], [11], [12], [14]-[17]). 

• The system is able to classify movements performed 
on one side of the body - other systems usually recog-
nize either movements of the left/right hand (imagi-
ned/performed) or various types of mental tasks 
(mental arithmetic, mental rotation,...) 

• Only one BCI based on HMMS is developed. 

• No personalization is used in the described system. 
Although the same features for all persons are used 
the results comparable with other systems using per-
sonalization are reached. 

• Compared with [2] the underlying structure of the 
random process was successfully exploited. 

• Suggested system combines the usage of the informa-
tion carried by the ERD/ERS as well as the ERP in-
formation accompanying the movement shape. 

The next work will be focused on the extension of the 
movement database, on the deeper evaluation of the spatial 
filtration and parameterization influence with the aim to 
finally implement a working BCI system. 
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