Exploitation of Higher Order Moments Increase the Tracking Aircraft by the Extended Alpha-Beta Filter

Zdeněk DOSTÁL ${ }^{1}$, Igor MOKRIŠ ${ }^{2}$
${ }^{1}$ Dept. of Navigation Systems, Military Academy, P.O.Box 45, 03101 Liptovsky Mikulas, Slovak Republic
${ }^{2}$ Dept. of Information Systems, Matej Bel University, 09704 Banska Bystrica, Slovak Republic

dostal@valm.sk, mokris@financ.umb.sk

Abstract

The paper analyzes the possibility of exploitation of higher order moments for increasing the precision of tracking of a flying aircraft by the $\alpha-\beta$ filter. For tracking of a flying aircraft by the $\alpha-\beta$ filter the $3^{r d}$ and $4^{\text {th }}$ order moments in $3 D$ space are used.

Keywords

Aircraft track moving, $\alpha-\beta$ filter.

1. Introduction

Up to nowadays, the tracking of flying aircraft by the $\alpha-\beta$ filters has been used for computation of a position of a flying aircraft using moments of the $1^{\text {st }}$ and $2^{\text {nd }}$ order. These moments represent speed and acceleration of a flying aircraft. This paper describes the tracking of a flying aircraft by extended algorithm for its position generation using the moments of higher orders. For the analysis of flying aircraft positions the $3^{\text {rd }}$ and $4^{\text {th }}$ order moments are used in 3D space by $\alpha-\beta$ filter $[2-5,7,8]$.

For the aircraft flight modeling, the track including four sections of flight, i.e. straightforward uniform track, a course maneuver track, speed maneuver track and a height maneuver track were used. The modeling of a flight of an aircraft corresponds to a real aircraft flight.

2. Basic Terms

A utilization of the $\alpha-\beta$ filter for aircraft tracking in the basic form [2-8] uses the $1^{\text {st }}$ and $2^{\text {nd }}$ order moments of a flying aircraft track in a 3-dimension space which represent its speed and acceleration. This filter uses a prediction-correction principle and is expressed by the following terms:

Equation of prediction position

$$
\begin{equation*}
x(k+1, k)=\mathbf{F}(k+1, k) \cdot x(k) \tag{1}
\end{equation*}
$$

Equation of correction position
$x(k+1, k+1)=x(k+1, k)+\mathbf{K}(k+1)\left[x_{m}(k+1)-x(k+1, k)\right]$
where, $x(k)=\left[s_{x m}(k), s_{y m}(k), s_{z m}(k), v_{x}(k), v_{y}(k), v_{z}(k)\right]^{T}$ is a status vector; $\mathbf{F}(k+1, k)$ is the system transmission matrix of system of time interval $t(k)$ to $t(k+1) ; \mathbf{K}(k+1)$ is the matrix of tracking filter gain; $s_{x m}(k), s_{y m}(k), s_{z m}(k)$ are coordinates of the aircraft position measured by radar in $t(k)$; $v_{x}(k), v_{y}(k), v_{z}(k)$ are speed elements of the aircraft in $t(k)$; $x(k)$ is the state vector in $t(k) ; x(k+1, k)$ is the prediction position vector in $t(k+1) ; x(k+1, k+1)$ is the correction position vector in $t(k+1)$ and $x_{m}(k+1)$ is the measurement vector of the aircraft position coordinates in $t(k+1)$.

For the system transmission matrix, the following equation holds

$$
\mathbf{F}(k+1, k)=\left[\begin{array}{cccccc}
1 & 0 & 0 & \Delta t & 0 & 0 \tag{3}\\
0 & 1 & 0 & 0 & \Delta t & 0 \\
0 & 0 & 1 & 0 & 0 & \Delta t \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

where, Δt is a time difference between two samples of the aircraft positions and the system transmission matrix uses $1{ }^{\text {st }}$ order moments.

For the analysis of a higher-order moment effect for prediction of the aircraft's position based on formula (1), the state vector $x(k)$ can be analyzed and due to the system transmission matrix $\mathbf{F}(k+1, k)$ (3) of a tracking filter have to be extended by higher-order moments of a position coordinates. Position coordinates with higher-order moments are represented by the $2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ order moments. Three further models of tracking filter have been created in this case. They have a different form of state vector $x(k)$ and a different form of system transmission matrix $\mathbf{F}(k+1, k)$, as follows
$x(k)=\left[s_{x m}(k), s_{y m}(k), s_{z m}(k), v_{x}(k), v_{y}(k), v_{z}(k), a_{x}(k), a_{y}(k), a_{z}(k)\right]^{T}$

$$
\mathbf{F}(k+1, k)=\left[\begin{array}{ccccccccc}
1 & 0 & 0 & \Delta t & 0 & 0 & \frac{\Delta t^{2}}{2} & 0 & 0 \tag{5}\\
0 & 1 & 0 & 0 & \Delta t & 0 & 0 & \frac{\Delta t^{2}}{2} & 0 \\
0 & 0 & 1 & 0 & 0 & \Delta t & 0 & 0 & \frac{\Delta t^{2}}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

which, for the position prediction, uses the $1^{\text {st }}$ and $2^{\text {nd }}$ order moments

$$
\begin{align*}
& x(k)=s_{x m}(k), s_{y m}(k), s_{z m}(k), v_{x}(k), v_{y}(k), v_{z}(k), a_{x}(k), a_{y}(k), a_{z}(k) \\
& \left.w_{x}(k), w_{y}(k), w_{z}(k)\right] \tag{6}\\
& \mathbf{F}(k+1, k)=\left[\begin{array}{cccccccccccc}
1 & 0 & 0 & \Delta t & 0 & 0 & \frac{\Delta t^{2}}{2} & 0 & 0 & \frac{\Delta t^{3}}{6} & 0 & 0 \\
0 & 1 & 0 & 0 & \Delta t & 0 & 0 & \frac{\Delta t^{2}}{2} & 0 & 0 & \frac{\Delta t^{3}}{6} & 0 \\
0 & 0 & 1 & 0 & 0 & \Delta t & 0 & 0 & \frac{\Delta t^{2}}{2} & 0 & 0 & \frac{\Delta t^{3}}{6} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \tag{7}
\end{align*}
$$

which for the position prediction uses from $1^{\text {st }}$ to $3^{\text {rd }}$ order moments and

$$
\begin{gather*}
x(k)=\left\lfloor s_{x m}(k), s_{y m}(k), s_{z m}(k), v_{x}(k), v_{y}(k), v_{z}(k), a_{x}(k), a_{y}(k), a_{z}(k)\right. \\
\left.w_{x}(k), w_{y}(k), w_{z}(k), u_{x}(k), u_{y}(k), u_{z}(k)\right\rfloor \tag{8}
\end{gather*}
$$

$\mathbf{F}(k+1, k)=$
$=\left[\begin{array}{ccccccccccccccc}1 & 0 & 0 & \Delta t & 0 & 0 & \frac{\Delta t^{2}}{2} & 0 & 0 & \frac{\Delta t^{3}}{6} & 0 & 0 & \frac{\Delta t^{4}}{24} & 0 & 0 \\ 0 & 1 & 0 & 0 & \Delta t & 0 & 0 & \frac{\Delta t^{2}}{2} & 0 & 0 & \frac{\Delta t^{3}}{6} & 0 & 0 & \frac{\Delta t^{4}}{24} & 0 \\ 0 & 0 & 1 & 0 & 0 & \Delta t & 0 & 0 & \frac{\Delta t^{2}}{2} & 0 & 0 & \frac{\Delta t^{3}}{6} & 0 & 0 & \frac{\Delta t^{4}}{24} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
which, for the position prediction, uses from the $1^{\text {st }}$ to $4^{\text {th }}$ order moments. All tracking filters have been analyzed for identical track of an aircraft flight.

3. An Analysis of the Extended $\alpha-\beta$ Filter

A track of aircraft flight includes, for the needs of analysis, the following sections:

- a straightforward uniform flight
- a course manoeuvre flight
- a height manoeuvre flight
- a speed manoeuvre flight.

The precise track Y_{P} of an aircraft flight was generated according to the higher demands and it represents a real aircraft flight. The measured track Y_{M} of the aircraft flight was created from the precise track using noise by a noise generator. The tracking of the aircraft flight was obtained from measured positions Y_{M} based on filtration using the prediction - correction tracking method as filtered track $Y_{i o}$, where i is the number of the used order moment.

Expressions of the coordinate difference $\Delta x_{i o}$ for all coordinates, x, y, z, for determination of the positions of the flying aircraft track based on from $1^{\text {st }}$ to $4^{\text {th }}$ order moments may be defined as [1]

$$
\begin{align*}
& \Delta x_{1 o}(k)=v_{x}(k) \cdot \Delta t \tag{10}\\
& \Delta x_{2 o}(k)=0,5 \cdot a_{x}(k) \cdot \Delta t^{2} \tag{11}\\
& \Delta x_{3 o}(k)=0,166 \cdot w_{x}(k) \cdot \Delta t^{3} \tag{12}\\
& \Delta x_{4 o}(k)=0,042 \cdot u_{x}(k) \cdot \Delta t^{4} \tag{13}
\end{align*}
$$

where, $v(k)$ is speed, $a(k)$ is acceleration, $w(k)$ and $u(k)$ present the dynamic properties of the flying aircraft in time interval $t(k)$.

3.1 Analysis of Tracking Precision for Track Including Section of Straightforward Uniform Flight by Extended $\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\beta}$ Filter

For the analysis of aircraft track, the moments of the $1^{\text {st }}\left(Y_{1 o}\right), 1^{\text {st }}$ to $2^{\text {nd }}\left(Y_{2 o}\right), 1^{\text {st }}$. to $3^{\text {rd }}\left(Y_{3 o}\right)$ and $1^{\text {st }}$ to $4^{\text {th }}\left(Y_{4 o}\right)$ order by the extended $\alpha-\beta$ filter were used. On the basis of the $\alpha-\beta$ filter with regard to the sowed moments of higher order there were obtained the results of the aircraft tracking for the track including a straightforward uniform flight section and coordinate difference which are depicted in Tab. 1 and Fig 1.

The additional contribution of moments from $1^{\text {st }}$ to $4^{\text {th }}$ orders for determination of the flying aircraft positions is sowed in Fig. 1 in meters. Values of $1^{\text {st }}$ order moments express the coordinate imprecision error between two positions of the track and they are in interval approximately to 7000 meters. Values of $2^{\text {nd }}$ order moments express the
coordinate imprecision error between two positions of the track and they are approximately in interval to 500 meters. Values of $3^{\text {rd }}$ order moments express the coordinate imprecision error between two positions of track and are approximately in interval to 350 meters. Values of $4^{\text {th }}$ order moments express the coordinate imprecision error between two positions of track and are approximately in interval to 200 meters.

Straightforward uniform flight of aircraft					
	x - coordinate [m]				
$\Delta \mathrm{x}_{1}$ 。	6990	7070	6100	6450	6470
$\Delta \mathrm{x}_{2}$ 。	13	42	-484.9	172.75	10.5
$\Delta \mathrm{x}_{3}$	52.788	9.628	-176.964	218.29	-53.95
$\Delta \mathrm{x}_{4}$	62.58	-10.92	-46.62	99.54	-68.88
	y - coordinate [m]				
Δy_{10}	3300	2950	4520	4060	4260
Δy_{20}	52.15	-178.15	486.35	-229.65	202.7
Δy_{30}	-71.712	-76.526	320.214	-337.312	110.39
Δy_{40}	-98.28	-1.26	100.38	-166.3	113-4
	z - coordinate [m]				
$\Delta \mathrm{z}_{10}$	20	20	50	10	-40
Δz_{20}	17.9	-0.05	14.25	-18.1	-27.7
Δz_{30}	4.98	-5.976	4.814	-10.79	-3.154
$\Delta \mathrm{z}_{4}$	-0.42	-2.94	2.52	-3.78	2.1

Tab. 1. Coordinate difference for the track including straightforward uniform flight section of aircraft with regard to higher - order moments.

Fig. 1. Results of model tracking aircraft flight for section of rectilinear equal flying of aircraft (Direct, steady flight of aircraft).

3.2 Analysis of Tracking Precision for Track Including Section of Course Manoeuvre Flight by Extended $\alpha-\beta$ Filter

By modeling the tracking filter, results were obtained for the section of a flight of an aircraft with a left loop at 360°. These are given in Tab. 2 and expressed in Fig. 2.

The obtained values difference and corresponding
coordinates of tracking a flying aircraft with moments from the $1^{\text {st }}$ to $4^{\text {th }}$ order correspond to the results, which were obtained in the section of direct, steady flight of an aircraft.

Course manoeuvre flight of aircraft						
	x-coordinate [m]					
$\Delta x_{1 \circ}$	2040	1540	1200	180	-430	
$\Delta x_{2 \circ}$	-127.15	-253.45	-169.5	-507.45	-304.85	
$\Delta x_{3 \circ}$	-60.922	-41.998	27.888	-112.216	67.23	
$\Delta x_{4 \circ}$	-15.12	4.62	17.64	-35.28	45.36	
	y-coordinate [m]					
$\Delta y_{1 \circ}$	1540	2010	1960	2100	1570	
$\Delta y_{2 \circ}$	60.9	233.7	-24.7	71.5	-265.55	
$\Delta y_{3 \circ}$	29.216	57.436	-85.822	31.872	-111.884	
$\Delta y_{4 \circ}$	2.94	7.14	-36.12	29.82	-36.54	
z						
$\Delta z_{1 \circ}$	-50	-30	-50	-10	-50	
$\Delta z_{2 \circ}$	-48.65	9.6	-7.8	20.55	-24.65	
$\Delta z_{3 \circ}$	-21.082	19.422	-5.81	9.462	-14.94	
$\Delta z_{4 \circ}$	-7.14	10.08	-6.3	3.78	-6.3	

Tab. 2. Coordinate order difference for section of tracking flight of aircraft with left loop at 360° with regard to the higher order moments.

Fig. 2. Results of modeling track of flying aircraft for the section of tracking flight of the aircraft with left loop at 360°.

3.3 Analysis of Tracking Precision for Track Including Section of Height Manoeuvre Flight by Extended $\alpha-\beta$ Filter

By modeling the tracking filter, results, which are given in Tab. 3 and expressed in Fig. 3, were obtained for track including the section of height manoeuvre flight by extended $\alpha-\beta$ filter of track.

The obtained moments of the first to the fourth order correspond to the results that were obtained in the previous case.

Height manoeuvre flight of aircraft					
	x－coordinate［m］				
$\Delta \mathrm{x}_{10}$	990	1340	1800	2100	2200
$\Delta \mathrm{x}_{2}$	243.55	175.2	232.8	150.7	42.25
$\Delta \mathrm{x}_{3}$	－44．488	－22．742	19.09	－27．224	－34．694
$\Delta \mathrm{X}_{4}$ 。	－13．02	5.46	10.5	－11．76	－1．68
	y－coordinate［m］				
Δy_{10}	－1000	－250	140	490	1210
Δy_{20}	397.05	372.9	19645	175.1	360.3
Δy_{30}	106.406	－7．968	－58．598	－7．138	61.42
Δy_{4}	－5．04	－28．98	－12．6	13.02	17.22
	z－coordinate［m］				
$\Delta \mathbf{z}_{10}$	180	260	380	420	470
Δz_{2} 。	93.9	42.15	59.15	21.95	26.1
$\Delta \mathrm{z}_{3}$	30.046	－16．098	5.644	－12．284	1.328
$\Delta \mathrm{z}_{4}$ 。	1.68	－11．76	5.88	－4．62	3.36

Tab．3．Differences of coordinates for track including the section of the height manoeuvre flight of an air object to a higher flying level with regard to higher order moments．

Fig．3．Results of modeling of track of moving air object for section of tracking transition to higher－flying level．

3．4 Analysis of Tracking Precision for Track Including Section of Speed Manoeuvre Flight by Extended $\boldsymbol{\alpha}-\boldsymbol{\beta}$ Filter

By modeling the tracking filter，the results were obtained for the section of track including the direct unsteady movement of an air object．These are given in Tab． 4 and expressed in Fig． 4.

Moments of the $1^{\text {st }}$ to $4^{\text {th }}$ order obtained by modeling of this case confirm the results in the previous case．

4．Conclusion

By analysis of the presented $\alpha-\beta$ filter with regard to the $1^{\text {st }}$ to $4^{\text {th }}$ order moments there were obtained results， which were used for prediction of the position of a moving air object during processing of radar data．These results
confirm that the accuracy of tracking does not depend on the character of tracks and movement of flying air object．It depends on the order of the used moment．For individual moments，results were achieved for coordinate tracking positions in ranges：
－for the $1^{\text {st }}$ moments up to 7000 m ，
－for the $2^{\text {nd }}$ moments up to 500 m ，
－for the 3^{d} moments up to 350 m ，
－for the $4^{\text {th }}$ moments up to 200 m ，
whereby it is confirmed that their application is useful due to the increase of tracking accuracy．

Speed manoeuvre flight of aircraft					
	x－coordinate［m］				
$\Delta \mathrm{x}_{1}$ 。	2540	2660	3190	3440	3880
$\Delta \mathrm{X}_{2 \mathrm{ov}}$	－28．4	58.95	261.6	126.4	222.8
$\Delta \mathrm{X}_{3}$	－12．948	29.05	67.23	－44．82	32.038
$\Delta \mathrm{X}_{4 \mathrm{ov}}$	2.52	10.5	9.66	－28．56	19.32
	y－coordinate［m］				
Δy_{10}	1060	1570	1440	1670	1720
Δy_{20}	266.4	－15．4	－66．2	117.35	20.4
Δy_{30}	121.18	－91624	－16．932	60.922	－32．204
Δy_{40}	27.72	－54．18	19.32	19.74	－23．52
	z－coordinate［m］				
$\Delta \mathbf{z}_{10}$	70	10	120	40	－30
Δz_{20}	－113．55	－30	53.8	－37．35	－33．15
$\Delta \mathbf{z}_{30}$	－9．13	27.722	27.888	－30．212	1.328
Δz_{40}	3.36	9.24	0	－14．7	7.98

Tab．4．Differences of coordinates for the section of the track with direct unsteady movement of an air object with regard to higher order moments．

Fig．4．Results of modeling the track of moving air object for section of track with direct unsteady movement．

Refrences

［1］BARTSCH，H．J．Mathematics formulas．Praha：SNTL， 1983.
［2］FAROOQ，M．，BRUDER，S．Information type filters for tracking a maneuvering target．IEEE Transactions on Aerospace and Electronic Systems．1990，vol．26，no．3，p． $441-454$.
[3] KALKATA, P. R. The tracking index: A generalized parameter for $\alpha-\beta$ and $\alpha-\beta-\gamma$ target tracks. IEEE Transaction on Aerospace and Electronic Systems. 1984, vol. AES-20, no. 2, p. 174-182.
[4] KAWASE, T., TSURUNOSONO, H., EHARA, N., SASASE, I. An alpha-beta tracking filter combined with maneuver-driven circular prediction. Electronics and Communications in Japan, Part I Communications 80, 1997, no. 10, p. 1-9.
[5] KAWASE, T., TSURUNOSONO, H., EHARA, N., SASASE, I. An alpha-beta tracking filter combined with ellipsoidal prediction using the generalized Hough transform. Electronics and Communications in Japan, Part I - Communications 81, 1998, no. 8, p. 9-18.
[6] KOSUGE, Y., KAMEDA, H., MANO, S., KONDOU, M. A Cartesian coordinate conversion algorithm for radar tracking with range rate measurement. Electronics and Communications in Japan, Part I - Communications 80, 1997, no. 4, p. 51-61.
[7] KOSUGE, Y., KAMEDA, H., MANE, S. Kalman filter and alphabeta filters for radar tracking. Electronics and Communications in Japan, Part I - Communications 80, 1997, no. 3, p. 67-77.
[8] MOKRIŠ, I., DOSTÁL, Z. Tracking filters for tracking of moving air objects. [Scientific Monograph]. Military Academy, Liptovský Mikuláś, 1999, (in Slovak).

About Authors...

Zdeněk DOSTÁL received Ing (M.Sc.) degree in electrical engineering from the Military Technical University. Liptovsky Mikulas, and CSc. (PhD) degree in military technical from the same university. He was Associate Professor in military technical with the Dept. of Air Defense Military, TU, Liptovsky Mikulas. His research is focused on radar following of aircrafts.

Igor MOKRIŠ received Ing (MSc) degree in technical cybernetics from the Technical University, Kosice in 1972 and CSc. (PhD) degree from the Slovak Technical University in Bratislava in 1980. From 1985 he was Associate Professor and from 1997 Professor in technical cybernetics and artificial intelligence with the Dept. of Informatics and Computers, Military Academy, Liptovsky Mikulas. From 1998 he is with the Dept. of Information Systems, Matej Bel University, Banska Bystrica, as Professor. His research interests include signal and image processing, pattern recognition and networks.

RADIOENGINEERING REVIEWERS September 2003, Volume 12, Number 3

- BIOLEK, D., Military Academy, Brno
- BILÍK, V., Slovak Univ. of Technology, Bratislava
- CZARNECKI, M., University of Lodź, Lodź
- ČERNOCKÝ, J., Brno Univ. of Technology, Brno
- ČERNOHORSKÝ, D., Brno Univ. of Technol., Brno
- DOBOŠ, L., Technical University of Košice, Košice
- DOSTÁL, T., Brno University of Technology, Brno
- HALÁMEK, J., Czech Academy of Sciences, Brno
- HANUS, S., Brno University of Technology, Brno
- KOZUMPLÍK, J., Brno Univ. of Technology, Brno
- KVIČERA, V., TESTCOM, Prague
- LÉDL, P., Czech Technical University, Prague
- LEVICKÝ, D., Technical Univ. of Košice, Košice
- MOHYLOVÁ, J., Techn. Univ. of Ostrava, Ostrava
- POLLÁK, P., Czech Technical University, Prague
- PROVAZNÍK, I., Brno Univ. of Technology, Brno
- SMÉKAL, Z., Brno University of Technology, Brno
- SVAČINA, J., Brno University of Technology, Brno
- ŠEBESTA, V., Brno University of Technology, Brno
- VLČEK, K., Technical Univ. of Ostrava, Ostrava
- VRBATA, J., Czech Technical University, Prague
- WIESER, V., University of Žilina, Žilina

