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Abstract. This paper deals with the analysis and optimi-
zation of a speech command recognition system (SCRS) 
trained on Czech telephone database Speechdat(E) for use 
in a selected noisy environment. The SCRS is based on 
hidden Markov models of context dependent phones 
(triphones) and mel-frequency cepstral coefficients analy-
sis of speech (MFCC). The main aim is to analyze and to 
search for the optimal settings of SCRS with respect to 
additive noise robustness without use of additional tech-
niques for additive noise reduction. The analysis is pointed 
to the appropriate setting of MFCC computation, the 
silence model adjustment and grammar selection pos-
sibilities. It is shown, that the correct performance of SCRS 
strictly depends on an appropriate adjustment of the 
silence model. The ability of the silence model adaptation 
is confirmed. When SNR is higher than 15 dB the suitable 
performance of SCRS can be guarantied without any 
modification of the triphones speech models by: 1. the 
optimal setting of MFCC computation, 2. the proper si-
lence model adaptation. The assumption of a speech com-
mand recognition system use in an environment where SNR 
is higher than 15 dB is fulfilled in many applications. 

Keywords 
Robust speech recognition, Mel-cepstral analysis, si-
lence model adaptation, parallel model combination. 

1. Introduction 
The great effort has been devoted to the development 

of noise robust speech recognition systems [1]-[5]. The 
main aim of this contribution is the analysis, limit finding 
and optimization of the telephone speech command recog-
nition system (SCRS) performance in a selected noisy 
environment without use of additional techniques for ad-
ditive noise reduction [2], [5]. The speech recognition 
system analysis is divided into three parts. The first deals 
with the optimal setting of MFCC computation with re-
spect to the additive noise presence. The second addresses 
the influence of the silence model parameters setting. Two 

possible grammar constructions for SCRS are compared in 
the last part. The deeper understanding of SCRS perform-
ance degradation by the influence of an additive noise is 
the motivation for all this work. 

2. Speech Recognition System 
Construction 
The context dependent hidden Markov models 

(HMM) of phonemes trained on two thirds of Czech data-
base for the fixed telephone network Speechdat(E) [6] 
were used for the speech recognition system building. The 
whole database consists of approximately 100 hours of 
speech records from 1000 speakers. This type of SCRS 
construction enables an undemanding configuration of 
commands dictionary in comparison to SCRS based on 
HMM models of full words. Mel-frequency cepstral coeffi-
cients analysis, which is frequently being applied as a base 
for noise robust front-ends was selected [13], [14]. 

2.1 The Testing Database 
and Noises Selection 
One tenth of database Speechdat(E) [6] was used for 

testing. This part was selected with the intention not to 
overlap with the training part of the database. The testing 
database contains speech records with ten Czech numerals 
zero to nine in random order. The pauses between testing 
words have random duration, which well simulates real 
applications. 

The analysis of the noise naturally present in the 
telephone communication was performed [12]. It was 
found that the naturally occurring noise can be separated 
by its characteristics into three groups. The noise from the 
first group (Noise1) has stationary character and is mainly 
caused by the transmission channel operation. The most 
common value of SNR is between 35 to 50 dB for this type 
of noise. This noise is present both in pauses and during 
the speech activity. The second category noise (Noise2) is 
caused by speaker breathing; it has medium-term duration 
(0.5–1 s) and a characteristic spectrum. The most common 
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value of SNR is between 15 to 30 dB for this type of noise. 
The important fact is that this type of noise can be found 
just in pauses and it does not affect the speech. The last 
group (Noise3) represents the noise, which is caused by 
manipulation with an earpiece by the speaker. This type of 
noise has short-term duration with relatively high level and 
is also often registered during pauses. All types of noise are 
commonly present during HMM training so SCRS is well 
adapted on them and is able to operate with recognition 
results higher than 95 %. The situation when the noise, 
which was not included during training stage, is simulated 
below. In the real application it would be the noise of an 
air-conditioner, a computer fan noise, a printer noise etc. 

A synthetically generated stationary white noise and 
three types of stationary narrowband noises were used for 
the robustness of SCRS against the additional additive 
noises testing. The three types of stationary narrowband 
noises were generated by white noise filtering in purpose to 
affect the first (noise F1, frequency band between 0.3 and 
0.9 kHz), the second (noise F2, frequency band between 1 
and 2.5 kHz) or the third (noise F3, frequency band 
between 2.5 and 3.4 kHz) formants. These noises are added 
to the testing speech records in order to achieve the 
specified SNR according to 
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where 
x[k] is the output signal, 
s[k] is the original speech,  
n[k] represents testing noise, 

sP̂  is the power of speech (obtained with use of 
forced alignment), 

nP̂  is the power of the testing noise. 

2.2 HMM Parameters and Training Method 
Description 
The observation vector is composed of three streams. 

The first stream is represented by 12 static mel-cepstral 
coefficients and one energy coefficient. The second and the 
third stream are composed of delta and acceleration coeffi-
cients respectively (parameterization MFCC_E_D_A [15]). 
During some experiments the energy coefficient is replaced 
by a 0'th cepstral (C0) coefficient or it is not used at all. If it 
is done in this way, it is emphasized in the text. The con-
text-dependent phonemes are modeled as a three-state 
HMM with tied states. Tree-based clustering was 
performed. The HMM training method is almost identical 
with [15], only the output distributions of all states are 
divided into three streams (as mentioned before) and each 
stream into three-component Gaussian mixture and three 
reestimations are added at the end of HMM training. Two 
silence models with the identical structure like [15] are 
used. 

3. The SCRS Performance under the 
Influence of Additive Noise 
Extensive experiments were carried out with the ob-

jective to analyze the SCRS performance under the influ-
ence of additive noise. The first intention is to obtain good 
recognition results at relatively high signal to noise ratio. 
The second intention is to obtain comparable results both 
for parameter acc (Percent Accuracy [%]) and for parame-
ter corr (Percent Correct [%]) [15]. The parameter corr 
definition does not account for insertion errors [15], in this 
case for extra inserted words. The extra inserted words are 
most often inserted during pauses. This is why the differ-
ence between acc and corr parameters can be found useful 
for SCRS performance during pauses evaluation. If both 
parameters show similar results then it can be supposed 
that the extra inserted command error is suppressed. 

3.1 Mel-cepstral Analysis Setting Influence 

The recognition system robustness against the artifi-
cially added noise with respect of MFCC setting is de-
scribed. The appropriate settings of M = WINDOWSIZE 
(the time duration of an input speech frame), tr = TAR-
GETRATE (time shift between two subsequent speech 
frames) and θ = DELTAWINDOW = ACCWINDOW (the 
number of subsequent frames used for delta and accelera-
tion coefficients computation) [15] parameters are investi-
gated for parameterization MFCC_E_D_A [15]. When 
particular optimum of the previous parameters is found, the 
importance of the energy coefficient and its possible re-
placement by the 0'th cepstral coefficient is evaluated. 

A new set of HMM for every tested setting was 
trained. The recognition system performance with the ob-
tained models was tested with use of all defined artificial 
noises within the SNR interval 0-40 dB. The analysis of 
experiments proved that the M, tr and θ parameters setting 
significantly influences the recognition system robustness 
against the additive noise. Tab. 1 shows the dependence of 
recognition system robustness against white noise on tr 
parameter. The best results were obtained for tr = 16 ms 
(the third column of Tab. 1.). When smaller value of tr 
parameter is set (10 ms) and the analyzed window size is 
held on M = 32 ms then the recognition system robustness 
can be increased again by the modification of delta and 
acceleration coefficients computation. This means that 
these coefficients are computed from longer signal segment 
(see Tab. 2). This fact confirms the idea that the tr setting 
and the way of delta and acceleration coefficients compu-
tation are related. It means that for shorter tr time it is valu-
able to compute the delta and acceleration coefficients 
from wider time surroundings of current segment. The 
appropriate choice of tr, M and θ parameters improves the 
SCRS performance during pauses in speech which can be 
seen from the difference between corr and acc results. This 
fact relates with better determination of pauses by the 
silence model. 
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The importance of the energy coefficient is evaluated 
in Tab. 3. There are three dependences of recognition re-
sults on the SNR, which were measured with the energy 
coefficient use (without normalization of the energy coeffi-
cient), the C0 coefficient use and when no one of them was 
used, respectively. The results obtained with energy coeffi-
cient are slightly better than with C0 coefficient. The 
recognition results are significantly worse if no one of 
them was used. 

Just the white noise dependences were selected (as 
typical) to document the previous experiments. The results 
for all types of defined testing noises and parameters tr = 
= 16 ms, M = 32 ms a θ = 2 are shown in Tab. 4 and will 
be referred to in the next sections. The best recognition 
results were obtained for white noise and the worst for F3 
noise generally in all these simulations. Thus F3 noise can 
be identified as the most harmful from this point of view. 
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Tab. 1.  SCRS robustness dependence on tr (M = 2 tr, θ = 2). 
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Tab. 2.  SCRS robustness dependence on θ (tr = 10 ms, M = 32 
milliseconds). 

3.2 Silence Model Setting Influence 
The experiments carried out and their analysis proved 

that if the additive noise is present the SCRS performance 
is often getting worse during pauses [10], [11]. This can be 
found by the analysis of recognized commands and their 
time alignment; indirectly it can be detected by the acc and 
corr parameters difference. It was also found that the type 
of the most often incorrectly inserted command is 
dependent on the additive noise type used for testing. 
Because the SCRS performance during pauses is closely 
related to the silence model, this model setting influence on 

SCRS performance in additive noise was tested. 
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Tab. 3. SCRS robustness dependence for white noise when the E 
or C0 or no additional parameterization coefficient is 
used (tr = 16 ms, M = 32 ms, θ  = 2). 
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Tab. 4.  Reference results: tr = 16 ms, M = 32 ms and θ  = 2. 

The silence model differs from the other speech 
models. For example, if SCRS operated in an environment 
without noise then the silence model would correspond to a 
signal with very low energy and random spectrum. If 
SCRS operates in slightly noisy environment (almost in 
any real application) then the silence model represents this 
environment. If the environment varies then the silence 
model should also vary, because otherwise it is not corre-
sponding to the environment and SCRS is unable of correct 
pauses (silence) identification. 

A three state silence model with forward-backward 
skip between the first and the last state [15] was used 
during all previous simulations. This model represents both 
short and long duration pauses. This silence model also 
represents the noise naturally present in telephone 
communication. The test database selection corresponds to 
the reality, because the speakers had not been given the 
instructions to make equal time pauses between commands 
(numbers) and naturally present noise had not been re-
moved in any way. 

The silence model parameters settings and its influ-
ence to the SCRS performance in additive noise is investi-
gated in the next sections. The SCRS performance is tested 
with the retrained silence model at first. This silence model 
was retrained in the way to be corresponding to one type of 
testing artificial noise. The next attempt is to study of 
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SCRS performance when the silence model setting is being 
dynamically changed to be matched to the actually tested 
noise. 
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Tab. 5. Recognition rates for the retrained silence model to be 
matched F3 and SNR = 20 dB conditions (Parameteriza-
tion MFCC_E_D_A, tr = 16 ms, M = 32 ms, θ = 2). 

3.2.1 The Influence of Silence Model 
Obtained by Retraining 

The set of HMM was trained on two thirds of 
SpeechDat(E) database (the results of these models set are 
presented in Tab. 4). The silence model obtained by this 
training was replaced by the silence model which is more 
representative for hypothetical operation conditions. These 
conditions are specified by F3 noise occurrence with SNR 
of 20 dB. The new silence model was created by standard 
training procedure on small part of SpeechDat(E) database 
(containing approximately one hundred of records) to 
which the F3 noise with 20 dB SNR was artificially added. 
The analyses of SCRS performance with retrained model 
of noise were carried out in standard way for four types of 
testing noise and SNR range between 0 dB and 40 dB. The 
results are presented in Tab. 5. From the comparison of 
recognition results for the original silence model (Tab. 4) 
and for the retrained silence model (Tab. 5) the following 
can be seen: The significant improvement of recognition 
results was achieved in conditions which are in accordance 
to the silence model (the dependence for F3 noise). On the 
contrary if the testing noise does not correspond to the 
silence model, the SCRS performance becomes signifi-
cantly worse. On condition that the noise parameters and 
the silence model parameters are similar the corr and acc 
results come close. This fact gives the evidence of good 
SCRS performance during pauses. 

If we liked to carry out such analysis of SCRS per-
formance with matched silence model, the silence model 
would need to be retrained again for all tested types of 
noise and SNR. This method is possible, but it is computa-
tionally expensive and time consuming, furthermore the 
silence model parameters obtained by model training can 
be hardly analyzed. Therefore two different ways of the 
silence model parameters estimation were used. 

3.2.2 The Influence of Adapted Silence Model 

A simple estimation method of silence model pa-
rameters was proposed in purpose of SCRS performance 
analysis with adapted silence model. Both testing noise and 
naturally present noise are considered within silence model 
computation. The silence model parameters are directly 
estimated from corresponding testing noise realizations 
(white noise, F1, F2 and F3 noise) with addition of selected 
naturally present noise realizations (Noise1), (Noise2) and 
(Noise3). The noise obtained in this way is parameterized 
into vectors ot. The mean vector jµ̂  and the diagonal 
covariance matrix jΣ̂  are estimated by following equations 
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A three state silence model is built from the estimated 
parameters. All states are identical and the original transi-
tion matrix is used. The same three-component Gaussian 
mixtures are used in all three states. The noise parameters 
are estimated for every mixture separately with intention to 
include the different type of naturally present noise to 
every mixture. In other words, the sum of testing noise and 
naturally present noise of Noise1 type was used for mixture 
1 parameters estimation. The Noise2 noise was added in 
mixture 2 parameters estimation and the Noise3 noise was 
added in mixture 3 parameters estimation. The final results 
of the SCRS performance with adapted silence model are 
presented in Tab. 6. 

3.2.3 The Influence of Log-Add PMC 
Adapted Silence Model 

Parallel model combination (PMC) method based on 
Log-Add approximation [8]-[9] was tested with purpose of 
silence model adaptation to the testing noises. The Log-
Add approximation can be seen as a simplification of an 
original Log-Normal [7] approximation and it makes the 
assumption that the HMM models to be compensated have 
zero variance. Nevertheless a very good performance was 
reported [8]. The main disadvantage of PMC based 
methods is a high computational load when all the HMM 
models have to be compensated. It is not true in this case 
when just the silence model is compensated. The whole 
process is described by following equation 

( ),)~(exp)(explogˆ l
j

l
j

l
j µµµ +=  (4) 

where l
jµ̂ , l

jµ  and l
jµ~  are the new silence model, the 

original (trained) silence model and the tested noise means 
in the Log-Spectral domain. The features in cepstral do-
main are transformed into log-energy domain and back via 
the discrete cosine transform (DCT). To be able to perform 
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DCT correctly the energy parameter in feature vector is 
replaced by C0 coefficient. The delta and acceleration 
coefficients are not compensated as the tested noise is 
stationary. The whole process is illustrated in Fig. 1. The 
final results of the SCRS performance with PMC adapted 
silence model are presented in Tab. 7. 

 
Fig. 1.  Log-add PMC silence model adaptation process. 

3.2.4 Discussion 

The following conclusions can be deduced from the 
analysis of silence model influence to the SCRS robustness 
against the additive noise. The SCRS performance is very 
dependent on silence model parameters even with the 
relatively high SNR assumption (SNR > 25 dB). Incorrect 
silence model setting can ruin all the SCRS performance. It 
is demonstrated in Fig. 2, where the spectrograms of one 
selected record are depicted together with the recognized 
commands alignment (see vertical lines bordering the 
commands). Three alternatives are presented. The first 
spectrogram shows the record without artificially added 
noise and when unmodified SCRS is used. The second 
spectrogram shows the same SCRS output when F3 noise is 
occurred with 15dB SNR. The third one represents the 
results when the silence model is PMC adapted for the 
same noise conditions. It can be observed from the second 
spectrogram that the SCRS with an inadequate silence 
model is unable to produce correct word borders. Further-
more F3 noise spectrum is similar to the unvoiced pho-
nemes spectra. This causes substitutions of correct com-
mands by the one, which contain the phoneme with similar 
spectra to the background noise. 

On the contrary the SCRS system indicates almost 
the same robustness against all testing noises with well 
dynamically adapted silence model. In our case almost  

independently on the F1, F2, F3 or white noise the recog-
nition score was in the mean higher than 90 % for speech 
signal with SNR higher than 15 dB (Tab. 6, 7). The same 
or better results were obtained with dynamically adapted 
silence model than with the silence model obtained by 
retraining. The interesting result is that with the use of 
narrowband noises (F1, F2, F3) and corresponding silence 
model the less sharp decreasing recognition results were 
measured in comparison with white noise dependence. This 
can be observed in Tab. 6, 7. If the speech is well specified 
in the presence of additive noise then the recognition sys-
tem is partially able to utilize the unaffected parts of speech 
signal. 
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Tab. 6. Recognition rates for adapted silence model (Parameteri-
zation MFCC_E_D_A, tr = 16 ms, M = 32 ms, θ = 2). 
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Tab. 7. Recognition rates for PMC adapted silence model 
(Parameterization MFCC_C0_D_A, tr = 16 ms, M = 32 
milliseconds, θ = 2). 

During the testing process in section 3.2.2 it was found that 
if not the all types of natural noises (Noise1, Noise2 and 
Noise3) were included into the silence model then the 
recognition results were significantly worse. This was 
caused by poor locating of speech presence in noisy signal. 
This confirms the fact that the originally trained silence 
model is able to absorb the specific natural noises present 
in telephone communication. 
 



6 J. NOVOTNÝ, P. SOVKA, J. UHLÍŘ, ANALYSIS AND OPTIMIZATION OF TELEPHONE SPEECH COMMAND RECOGNITION... 

 
Fig. 2. Demonstration of silence model setting influence to 

SCRS performance. 

The best results in most cases were obtained when the 
PMC adapted silence model was utilized. This solution 
unifies the advantage of the silence model trained on natu-
ral speech communication noises (Noise1, Noise2, Noise3) 
and good adaptation on testing noises. SCRS adjusted in 
this way is able to operate well both in the natural com-
munication noise and the extra stationary noise. 

3.3 The Grammar Setting Influence 
The SCRS has a very simple grammar definition. All 

possible commands are connected in parallel. The pre-
sumption is the same occurrence probability for all com-
mands. Grammar scale factor and word insertion penalty 
values [15] were set to 5.0 and 0.0 respectively in all ex-
periments. This simple grammar can be defined at least in 
two different ways with respect of silence model. The 
grammar a) (Fig. 3) where each command has to be sepa-
rated by silence was used in all previous simulations. This 
means the need of silence model passing after every recog-
nized command. In the alternative grammar definition b) 
(Fig. 3) there is no need (just the possibility) of silence 
model passing after the every recognized command. The 
results for this type of grammar are introduced in Tab. 8. 
These results were measured for the same set of HMM as 
for the results in Tab. 4. The simulations show better re-
sults for grammar a) with need of silence model passing 
after the each command (Tab. 4). It is probably caused by 
better determination of speech signal occurrence in addi-
tive noise by this type of grammar. 

4. Discussion and Results 
The influence of M, tr and θ parameters on the SCRS 

performance in noisy environment was analyzed. The 
correlation between appropriate setting of these parameters 
and the correct detection of pauses in input signal was 
found. The importance of the energy coefficient and its 
possible replacement by the C0 coefficient was evaluated. 

The silence model setting influence on the SCRS 
performance in additive noise was investigated. The im-
provement of SCRS robustness against the additive noise 
with (SNR > 15 dB) by the adapted silence model was 
observed. As expected, the PMC method was confirmed as 
very efficient for the silence model adaptation to a station-
ary noise. 

Two possibilities of grammar construction with re-
spect of silence model were analyzed. 

 
Fig. 3.  Grammar definitions. 
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Tab. 8.  SCRS robustness results for grammar b). 

5. Next Research 
The integration of methods for additive noise influ-

ence reduction into SCRS will follow this work. From the 
analyses presented in this paper follows that the methods 
for additive noise influence reduction should be tested 
together with silence model adaptation. The appropriate 
noise parameters estimation methods with respect to tele-
phone communication will be investigated. 
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