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Abstract. An improvement of Watson’s DVQ (Digital 
Video Quality) metrics is introduced. This metric was cho-
sen for its easy implementation caused by using DCT (Dis-
crete Cosine Transform) for video decomposition into 
spatial channels.  The metric is upgraded by segmentation 
tool. This tool is used for weighting the masked differences. 

Keywords 
Digital video quality metric, Watson, improvement, 
segmentation, DCT. 

1. Introduction 
A large number of digital video equipment use lossy 

compression of video stream. We must use it because there 
is an economy incentive to reduce bit rate. But lossy com-
pression may introduce visible artifacts in video sequences 
and we must have an instrument for automatically evalu-
ating their visibilities and generally the visual quality of 
digital video. 

Recently a number of video quality metrics have been 
proposed, their descriptions are in [5], [6]. Possible disad-
vantages of these metrics are that they may have either bad 
model human vision or that they may require amount of 
memory or computation power. Watson’s metric [1] used 
DCT transformation for video decomposition into spatial 
channels. It appears from DCTune metric [7] that was 
developed for optimization of still image compression. 
This metric needs lower computation requirements and it 
has good correspondence with subjective tests [8]. 

I have used segmentation since watching video you 
then focus only on particular areas of the scene. This focus 
of attention is highly scene-dependent. I propose con-
structing an importance map for the scene as a prediction 
for the focus of attention. One of the objects attracting 
most of attention is a human face. We will look at the hu-
man faces on the scene immediately. For segmentation we 
can use a robust algorithm for face detection but this step 
makes the model most complicated (higher computation 
requirements). Instead I have used a simple segmentation 
algorithm [3], [4] and proposed a weight coefficient for 
each area of the segmentation. By means of these weight 

coefficients I weight masked differences from the DVQ 
metric before their pooling. 

2. Improved DVQ metric 
Watson’s DVQ metric [1] computes the visibility of 

artifacts expressed in the DCT domain. Watson considered 
a simple, separable model that is the product of temporal 
function, spatial function and orientation function: 
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In this function T0 is a global or minimum threshold. The 
remaining functions have unit peak gain – the minimum 
threshold is given directly by T0.  

The temporal function is the inverse of the magnitude 
response of a first-order discrete IIR (Infinite Impulse 
Response) low-pass filter (Fig. 1):  
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where ws is sample rate in Hz and τ0 time constant in 
seconds. 

The spatial function (Fig. 2) is the inverse of Gaus-
sian. The parameter f0 corresponding to the radial fre-
quency at which threshold is improved by a factor of eπ. 
The parameter p is the display resolution in pixels/degree 
and then (p/16) converts from DCT frequencies to cy-
cles/degree (one cycle includes 8+8 pixels).  
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The orientation function takes into account the higher 
threshold for oblique frequencies and the imperfect visual 
summation between two component frequencies.  
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where r and β are parameters [2]. 
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The next step is the transformation to Local Contrast. 
The Local contrast is the ratio of DCT amplitude to DC 
amplitude for the corresponding block. 

 

The next step is temporal filtering which implements 
the temporal part of the contrast sensitivity function. The 
temporal filter is the second-order IIR filter, as described 
above. Using the IIR filter we minimize the number of 
video frames that must be saved in the memory. For greater 
simplicity we can use the first-order filter. 

The DCT coefficients expressed in local contrast form 
are now converted to just-noticeable-differences (JNDS): 
We obtained respective spatial thresholds for each DCT 
coefficients from Equations 3 and 4.  For each coefficient, 
we now need to determine the amount of distortion in term 
of JNDS units. This is done by weighting the DCT coeffi-
cients by the spatial thresholds and by computing the error 
at each location (the difference between the DCT coeffi-
cients in the reference and test sequence).  

Fig. 1.  The temporal function. 

 

The DCT coefficients are then divided by their re-
spective spatial thresholds. This implements the spatial part 
of the contrast sensitivity function (SCSF – Spatial Con-
trast Sensitivity Function). After that, the two sequences 
are subtracted to produce a difference sequence. 

The difference sequence is then subjected to a con-
trast masking operation. Contrast masking is accomplished 
by the masking sequence that depends upon the reference 
sequence. The reference sequence is time-filtered by a 
first-order, low-pass, discrete IIR filter (with a gain of g1 
and a time constant of τ1) after its JND conversion. These 
values are then raised to a power m. The values less than 1 
are replaced by 1, and the result is used to divide the dif-
ference sequence. This process corresponds to the tradi-
tional contrast masking where contrasts below a threshold 
have no masking effect, and that above threshold the effect 
rises as the mth power of mask contrast in JNDS. 

Fig. 2.  The spatial function. 

Fig. 3 is a block diagram of improved DVQ metric. The 
input of the metric is a pair of color image sequences. The 
first sequence is a reference and the second sequence is the 
test (a sequence with compression artifacts). The first step 
is a possible cropping to exclude regions whose quality is 
not of interest. 

In another block a segmentation of the reference se-
quence is performed. The segmentation that is used is very 
simple. It segments video sequence into three types of 
areas: uniform areas, contours and textures [3], [4]. The 
input images from reference sequence are parsed pixel by 
pixel. The surrounding square area is considered for a 
given pixel, i.e. a small block is chosen, the centre of 
which is the considered pixel. The variance of a block is 
computed as well as the variance in horizontal, vertical and 
diagonal directions. If the variance over the block is below 
some predefined threshold, then the activity of the block is 
low and the pixel is considered to be a part of the uniform 
area. If there is no direction such that the ratio of variance 
in this direction to variance over the block is close to unity, 
then the pixel is considered to belong to a texture zone. If 
there is a direction such that this ratio is much smaller than 
unity, then the pixel is considered to belong to a contour 
whose direction is the one that yields a small variance 
ratio. An example of segmented image is in Fig. 4 and 5. 
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Fig. 3.  The block diagram of improved DVQ metric 

The next step is a transformation from the input video 
color format (RGB, YCbCr, …) to the color space YOZ. 
Watson found [1] that it could be used YCbCr color space 
instead of the YOZ space, too. This simplifies the color 
transformation for a practical use.  

The next step is a video frame transformation to 
blocked DCT. Blocked DCT is applied to each frame in 
each color channel. 
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Fig. 6.  One frame from a difference sequence “Claire” 56kbps. Fig. 4.  One frame from video sequence “Claire”. 

  
Fig. 5.  The segmentation of one frame from video sequence. Fig. 7.  One frame from a difference sequence “Claire” 200kbps. 

All points of a specific area have a weight coefficient de-
pending on which area it falls into. 

Finally the masked differences are weighted by the 
three coefficients from the segmentation and pooled over 
all dimensions {frames f, color channels c, the number of 
blocks in vertical and horizontal directions by, bx, vertical 
and horizontal frequencies u, v} to yield summary 
measures of visual error. This summation is done using 
Minkowski metric:  
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the exponent β has a value of 4, which is close to 
probability summation [4]. 

Fig. 8. A comparison between DVQ (video sequence Claire) and 
RMSE. 

3. Results The distortion computed in Eq. (5) is a distortion measure 
that can be used as is. For our purpose it is expressed on 
the scale, defined in [10], that is modified. It is summarized 
in Tab. 1. The quality rating on this scale is obtained using 
the normalized conversion [11]: 

Three video sequences were used for testing new met-
ric – Claire, Carphone and Foreman. These sequences were 
compressed by MPEG-2 (Moving Picture Experts Group) 
software codec to the eight different data streams according 
to its bit rate. Two examples of the difference sequences 
for video sequence “Claire” are shown in Fig. 6 and 7. JN

Q
⋅+
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Next the results from the metric for all test sequences 
with different bit rate were compared with RMSE (Root 
Mean Squared Error) results (Fig. 8): 

where Q is the quality rating, J is the measured distortion, 
and N is normalization constant (its estimation is described 
in [4]). 
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Rating Impairment Quality 

0 Imperceptible Excellent 

25 Perceptible, not annoying Good 

50 Slightly annoying Fair 

75 Annoying Poor 

100 Very annoying Bad 

Tab. 1.  Quality rating on 0 to 100 scale. 

4. Conclusion 
• An improvement of the digital video quality metric of 

Watson was proposed. 

• Segmentation can improve the results from metric ac-
cording to viewer recognize coding artifacts better in 
the uniform areas than in the textures. 

• In the case of using the robust algorithm for face 
detection we can recognize areas those are very im-
portant for viewers and we can classify them by the 
relevant weight but we will consume higher compu-
tation power. 

4.1 Future Tasks 
• A comparison between model results and subjective 

tests (VQEG – Video Quality Experts Group). 

• Modeling two or three temporal mechanisms. In the 
current model only one low-pass temporal filtering is 
applied but now it is believed that there is one low-
pass (sustained channel) and one band-pass (transient 
channel) mechanism.  

• Derivation of weighting coefficients for segmentation 
from a comparison between model results and sub-
jective tests. 
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