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Abstract. In this paper, a simple and complete asympto-
tical analysis is given for a mean square error (MSE) 
piecewise uniform polar quantizer (PUPQ). We show that 
PUPQ has the same performance as the asymptotic non-
uniform polar quantizer (NPQ) and has implementation 
complexity between complexities of NPQ and uniform 
polar quantization. The goal of this paper is solving the 
quantization problem in case of PUPQ and finding the 
corresponding support region. 

The support region for scalar quantizers has been 
found in [5] by minimization of the total distortion D, 
which is a combination of granular Dg and overload Do 
distortions, D = Dg + Do. 

The nonlinear compressor characteristic is used in the 
paper [4]. Although the smooth and differentiable com-
pressor characteristic is convenient for mathematical ma-
nipulations, there are problems of accurately implementing 
analog nonlinearities. Today’s technology allows uniform 
quantizers or piecewise linear compressor characteristics 
implementation. In this paper, we give the simplest piece-
wise uniform quantization and show that it has approxi-
mately same performances as NPQ but it’s much simpler 
for application. 
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The goal of this paper is solving the quantization 
problem in case of piecewise uniform polar quantizer and 
finding the corresponding support region. It is done by 
analytical optimization of the granular distortion and nu-
merical optimization of the total distortion. A piecewise 
uniform polar quantizer consists of L different uniform 
polar quantizers. Different quantizers, however, may have 
different step-sizes. More precisely, our quantizer divides 
the input plane into L regions and every region is further 
sub-divided into Li (1 ≤ i ≤ L) sub-regions. Each concentric 
ring in polar plane is allowed to have a different number of 
sub-partitions in the phase quantizer. The number of sub-
partitions are denoted by Nij , 1 ≤ i ≤ L, 1 ≤ j ≤ Li. We per-
form the two-step optimization as in [6]: 1) the distortion 
optimization D( i) in every partition under the constraint 

1. Introduction 
Polar quantization techniques as well as their applica-

tions in areas such as computer holography, discrete Fou-
rier transform encoding, image processing and communica-
tions have been studied extensively in the literature. Syn-
thetic Aperture Radars (SARs) images can be represented 
in the polar format (i.e., magnitude and phase components) 
[1]. In the case of MSE quantization of a symmetric two-
dimensional source, polar quantization gives the best result 
in the field of the implementation [1]. The motivation be-
hind this work is to maintain high accuracy of phase infor-
mation that is required for some applications such as inter-
ferometry and polarimetry, without loosing massive 
amounts of magnitude information [1]. Uniform polar 
quantizers are employed in Synthetic Aperture Radars 
(SARs) imaging systems, interferometric and polarimetric 
applications [1, 2]. Optimal uniform quantization is given 
in [3], but optimal quantizer is nonuniform. Generalize of 
uniform polar quantizer is a piecewise uniform polar quan-
tizer. One of the most important results in polar quantiza-
tion is due Swaszek and Ku who derived the asymptotical-
ly optimal nonuniform polar quantization [4]. The approxi-
mation given by Swaszek and Ku for the Nonuniform Polar 
Quantization (for reconstruction and decision levels 
m = (m1, …, mL), r = (r1, …, rL+1) [4] is not correct beca-
use rL+1 – mL → ∞. That is the elementary reason for in-
troducing support region rmax. 
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and 2) the optimization of the total granular distortion 
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which achieves the optimal distribution of sub-cells Ni on 
each sub-partition, under the constraint 

NNL
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 . 

We also gave the example of quantizer constructing for 
a Gaussian source. This case has the importance because of 
using Gaussian quantizer on an arbitrary source; we can 
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take advantage of the central limit theorem and the known 
structure of an optimal scalar quantizer for a Gaussian ran-
dom variable to encode a general process by first filtering it 
in order to produce an approximately Gaussian density, 
scalar-quantizing the result, and then inverse-filtering to 
recover the original [7]. 

2. Optimization 
The  probability  density  function  (in polar coordina- 

tes) of a bivariate Gaussian random variable is [4] 
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Without loss of generality, the variance can be assumed to 
be σ 2 = 1. Let us consider PUPQ with L partitions, each 
containing Li sub-partitions. In order to minimize the total 
distortion we proceed as follows: We define the magnitude 
partition decision levels and reconstruction sub-partition 
levels as (see Fig. 1) 
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where ∆ = rmax / L. Let φ i, j, k be the phase decision level, and let ψ i, j, k be k-th phase reconstruction level for the i-th parti-
tion and j-th sub-partition. Then φ i, j, k = ( k – 1) 2π / Ni, j , 1 ≤ k ≤ Ni, j + 1; and ψ i, j, k = ( 2k – 1) π / Ni, j , 1 ≤ k ≤ Ni, j + 1. 
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Fig. 1.  The i-th partition of PUPQ and k-th cell on j-th level preview. 

The total distortion per dimension is then 
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After the integration over φ and the reordering, the expression for D becomes 
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To obtain (2), we use 
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In (2), 
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The optimization of D( i) can be formulated in terms of 
Lagrange multiplier technique as follows. The optimization 
function is 
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 (7) where λ  represents Lagrangian multiplier. Solving 
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Hence, we have analytically derived an approximate equ-
ality of PUPQ and the best NPQ distortions. For rmax = ∞ 
PUPQ we get the same distortion as in [4]. Further distor-
tion decrease can be achieved by the optimization of rmax. 
The exact optimal value for rmax is obtained by repeating 
our optimization method for different rmax and choosing the 
values for which D = Dg + Do is minimal. 

under the constraint 
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 , (3) As an illustration of PUPQ performance, in Fig. 2 we 

show signal-to-quantization noise ratio SNR = 10 log( 1/D) 
as a function of the number of bits per sample R. where 
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Substituting (3) into D( i), and from ∂D( i) / ∂Li = 0 follows 
that 
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Distortion D( i) now becomes 
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Fig. 2. PUPQ performances (SNR) versus rate for L = 8 compa-
red to theoretical NPQ bound. 

In order to minimize the function Obviously for a Gaussian source, the performances of the 
optimal PUPQ are the same as of the best NPQ [4]. How-
ever, comparing PUPQ results for higher L with those gi-
ven in paper [4] we have that our results would be better 
than the best known. The reason of obtaining better results 
lies in a fact that the method we proposed defines optimal 
support region. 
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3. Conclusions we use the method of Lagrange multipliers, where 
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λ  . In this paper, we give the simplest piecewise uniform 
quantization and show that it has approximately the same 
performances as NPQ but it’s much simpler for applica-
tion. We give the equation for optimal number of points for 
different levels and, also, optimal number of levels for 
every partition. The equation for the Dg

opt is given in a clo-
sed form. 

From ∂J / ∂Ni = 0 we obtain 
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and the expression for granular distortion becomes 
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