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Abstract. This paper addresses the problem of the mismatcletector (VAD) which discards non-speech signals prior to
between a silence model and background noises whictlassification [5, 6]. Since the reliable VAD design and tuning
often occurs in a telephone speech recognition system (SRS) problematic [4, 6], an alternative approach employing
application. At first, the use of parallel model combinationsilence model adaptation is proposed. An interesting solution
(PMC) methods is studied with the respect to this applicationdeveloped to handle talker non-speech sounds using extended
Secondly, the effective adaptation of a silence model to variousilence model was presented in [7]. It should be noted here
background noises is confirmed. Finally, an original methodthat frequently used noise reduction methods (such as spectral
combining log-add PMC with a noise power spectral densitysubtraction) modify both speech and non-speech parts of
estimation based on minimum statistics is proposed. Ththe input signal. It was shown that just the modification
performed tests prove the benefit of the suggested methoddbd non-speech parts can bring a significant improvement
the speech recognition results that is caused by the stabilitio the speech recognition score [2]. Similarly, well-known
of speech vector selection under the influence of variousodel based techniques (such as parallel model combination
background noises. The advantages can be seen in no ex{i& 10, 11, 12, 13]) compensate the silence model as well as
voice activity detector and in a relatively low computational speech models and thus the silence model compensation is
load. seen as the important part of the methods. In the telephone
communication, a speaking person talks close to the micro-
phone and therefore the signal to noise ratio (SNR) of speech
is relatively high. This is why just the problem of a silence
model adaptation rather than speech models adaptation is
studied in this paper and a practical solution is proposed and

Robust speech recognition, silence model adaptation, tested.
parallel model combination. The paper is outlined as follows. The speech recogni-
tion system is briefly described in Section 2. Sections 3 and 4
describe and investigate several possibilities of a silence model
1. Introduction adaptation with use of three different PMC techniques. A prac-
tical design and testing of silence model adaptation in con-
Stud . . . . r4’unction with noise parameters estimation based on minimum
y of robustness issues and their possible solutio Satistics is presented in Section 5. Section 6 summarizes the
is the important part of current speech recognition system de- . '
; . 2 results that were obtained.
velopment. Even more emphasis on this subject is needed when
the recognition system is supposed to work in a real application
like a telephone one [3]. This work follows up with [8] where
a detailed study of telephone speech recognition system peR, Description of Speech Recognition
formance in noisy environment was introduced and it further S
develops the idea of silence model adaptation. yStem
As the telephone nowadays can be used almost in any
real environment, it results in a wide range of background An identical speech recognition system with [8] was
noises occurring in the speech signal. The telephone communitilized for evaluation of silence model adaptation. It means
cation habits of speaking persons (strength of voice, breathingjat the context dependent hidden Markov models (HMM) of
production of non-speech sounds, earpiece manipulation) aphonemes trained on two thirds of the Czech database for the
unfortunately unspecified too and this can be harmful fofixed telephone network (Speechdat(E)) [1] were used for the
recognition results as well [7]. speech recognition system building. Mel-frequency cepstral
The non-speech signal production mentioned abové&oefficients analysis [16, 6] was applied, since it is a typical
leads into an inaccurate speech activity detection by SRBarameterization procedure linked with PMC methods.
and consequently into the inadequate recognition results. The observation vector is composed of three streams.
Several methods of the solution of this problem were proposed@he first stream is represented by 12 static mel-cepstral co-
[2,3,4,5, 6,7, 8]. Awidely used solution is a voice activity efficients and the 0'th cepstral coefficient. The second and

Keywords



2 J. NOVOTNY, P. SOVKA, J. UHLIR, STUDY AND APPLICATION OF SILENCE MODEL ADAPTATION FOR USE IN TELEPHONE...

Original (trained) Silence HMM  Additional (testing) Noise HMM

Cepstral Domain
v v v
o,() o,() 05() pcr! o
v A

y Log-Spectral Domain

Fig. 1.  The structure of silence model.
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the third streams are composed of delta and acceleration co- A

efficients respectively. The basic parameterization procedure DCT

setting is following. The input signal is windowed with a 32 *

ms Hamming window, the time shift between two following Cepsfral Domain

frames is set to 16 ms and the pre-emphasis coefficient is set

to 0.97. The number of subsequent frames used for delta and

acceleration coefficients computation is equal to 2 and cepstral

liftering coefficient is set to 22. Adapted Silence HMM
The HMM training strategy is identical with [8], where

more details about training, mel-frequency cepstral analysis Fig. 2. Simplified general block scheme of PMC methods.

optimization and the description of noise naturally present in

the telephone communication can be found. 3.1 Silence Model Adaptation by Log-NormaI
The HMM structure of silence model is shown in PMC Method

Fig. 1. The structure consists of three states. It slightly differs ) ) )
from the context dependent models of phonemes because it  Pror to the review of selected PMC methods, the uti-
has forward-backward skip between the first and the last stati2€d variables are summarized. Variables % represent the
The mentioned skip allows the SRS to remain in silence moddl'€an vector and full covariance matrix, respectively, for mod-
for longer time without unavoidable transition to the following €IS in the cepstral domain. All PMC compensation methods

word. The probability distributions of all states (both silenceV¢'® used just for static parameters compensation; delta and

and context dependent phonemes) were divided into thre&FCeleration were not compensated. In this case it means that
streams and each stream was modeled as a three-componiiift Variableg.®, 3¢ specify the probability distribution of the
Gaussian mixture. The silence model was trained togethdiSt Stream (static parameters) and a selected mixture. Vari-
with HMM of context dependent phonemes on two thirdsaplesﬂlz >t represgnt the mean vector .and full covariance ma-
of Speechdat(E) database, which means approximately -,tax again, but in this case for models in log spectral domain.

hours of records. This enabled various types of noise typicapimilarly p, = are the mean vector and full covariance matrix

for telephone communication (impulse noises, breathingf,or models in linear spectral domain. Noise model parame-

transmission channel operation etc.) to be absorbed by tHE'S are specified by notatigrthe noise-compensated silence
silence model. model parameters are represented by notasind the original

silence model parameters (created in the training stage) have
no additional notation. The subscrigls and();; are used for
specification of a vector or a matrix component.

3. Silence Model Adaptation Possibil- The first part of log-normal PMC [9] algorithm is a
.- transformation of parameters from the cepstral domain to the
iies log spectral domain. This transformation is performed by in-

verse DCT transform denoted 6y~ notation

Silence model adaptation possibilities are discussed in
this section. The adaptation schemes generally utilize the as-
sumption that ASR works best under the conditions in which pt=Cc'ps, T=cCc7l'zme(Cc) 1)
it was trained (matched conditions) and thus they attempt to
adapt once trained set of HMM to be adequate of hypotheti¢he next step is a conversion of log spectral parameters to lin-
set of HMM trained in the matched conditions. In our case weear spectral parameters. This is called an exponential transfor-
try to adapt once trained silence model to be adequate to tHBation and described by the following equations
current noise parameters. Well-known parallel model combi-
nation (PMC) algorithms [9, 10, 11, 12, 13] are seen to be well pi = exp (u; + %5,/2) 2
suited for this purpose. This is the reason why three variants of _ !
them were selected and reviewed with the respect of the appli- %ij = pisy [exp (355) — 1] (3)
cation. A simplified general block scheme of PMC methods isThe noise-compensated silence model parameters in the linear
depicted in Fig. 2. spectral domain are obtained by simple addition of the mean

T
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vectors and full covariance matrices of both the original silence Mathematical description is similar to the previous
model and the noise model in linear spectral domains ones. The notation is identical, but there are some new
. - symbols. O(r) is an observation vector in time. Notation
p=p+p X=X+3%. (4)  {}7_, means a sequence of length The first step of DPMC

. . orithm is the generation of observation vector sequences
The noise-compensated silence model parameters need to %8 9 q

transformed back to log spectral domain. It is called logarithm ¢ ¢
transformation and expressed by the equations o EE = {0 )} (1)
The second step is the transformation of generated sequences

) 1 i from cepstral domain to linear spectral domain
=log (fu) = 5 log | 5 +1 ©)
K3

T=1"

T

c {0(M)} o ={ew [CTO°(M)]} . (12)
Eﬁj =log ( A ” + 1) . (6) Newly created observation sequences are obtained by adding
Hiftj up the original observation sequences with the noise observa-

The last part of log-normal PMC compensation process is th#on sequence
conversion of models parameters from the log spectral domain

to the cepstral domain. The process is made by DCT . T ~ T
{om} _ ={omy+{om} . @3

The new observation sequences are transformed back to the
cepstral domain via standard parameterization procedure

pc=cpl, ¥¢=cxict. @)

3.2 Silence Model Adaptation by Log-Add X - X -
PMC Method {o (T)}T:1 - {c [1og (0(7))} }Tzl. (14)
Log-add PMC algorithm [11] is interpreted as a simpli- The mean vector and full covariance matrix in the cepstral do-
fication of log-normal PMC, which assumes the variances arghain for compensated models are computed by
very small. In this case the covariance matrices are not com-

pensated at all and this results in a significantly lower compu- . 1 L.
tational load. The assumption of very small or zero variances pc = T Z O%(7), (15)
simplifies the mathematical notation of this method as well. =1
The first part of log-add PMC algorithm is a transformation of P RN N /Al NT
mean vectors from the cepstral domain to log spectral domain ~ %° = 7 > (O°(T) - H°) (0(‘(7) - M°) : (16)
T=1
p=C 'yt (8)

The compensation of static means in the log spectral domai8.4 Discussion
can be easily described by the equation
. iy It was stated in the previous text that the log-add
= log [exp ;) +exp (f;)] - (®)  PMC can be viewed as a simplification of log-normal PMC
ﬁpproach The general disadvantage of this method is the
éncapablllty of covariance matrix compensation, but it does not
play such an important role here because the covariance matrix
of a background noise is difficult to be accurately estimated
in the real application. The accuracy of the DPMC method
is dependent on the lengfh of synthetic observation vector
. . sequences. Thus in the real application a compromise between
3.3 I\S/Illence Model Adaptation by DPMC accuracy and computational load must be foufid= 100 was
ethod . L .
experimentally found as a good compromise in the following
Data-driven PMC (DPMC) method [10] is based onexperiments.
the generation of synthetic observation vector sequences from
original HMM parameters and from noise model parameters.
These observation vector sequences in the cepstral domagp. Evaluation of Proposed Silence
are transformed to the sequences in the linear spectral domain )
by inverse procedure to parameterization. In this domain Adaptation Methods
it is possible to add the given speech signal observation
sequence (in our case given silence model observation At first, prior to the practical design and testing of si-
sequence) and the additive noise observation sequence. Nevdéynce model adaptation in the real environment, the best re-
created observation sequences correspond to the hypothetsiglts of selected silence model adaptation methods were stud-
observation sequences in the selected noise and therefore theg. The object was to test the SRS performance with and with-
are used for new (adapted) estimation of HMM set parametersut the silence model adaptation methods under the presence of

The last part of log-add PMC compensation process is the co
version of mean vectors from the log spectral domain to th
cepstral domain

¢ = Cpl. (10)
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No silence model Log-normal PMC Log-add PMC DPMC silence Log-normal
adaptation silence model adapt. silence model adapt. model adaptation PMC adapt.
SNR White F1 White F1 White F1 White F1 White F1

[dB] Corr/Acc | Corr/Acc || Corr/Acc | Corr/Acc || Corr/Acc | Corr/Acc || Corr/Acc | Corr/Acc Acc Acc
35 97.9/97.3 | 97.9/95.7 || 97.3/96.5 | 98.1/97.3 || 97.7/97.3 | 98.1/97.3 || 96.9/93.0 | 97.9/97.3 | 96.7 | 97.1
30 97.9/97.3 | 98.1/93.6 || 97.3/96.7 | 98.1/97.3 || 97.9/97.5 | 98.3/97.7 || 96.9/93.4 | 98.1/97.5 96.7 | 96.9
25 97.5/97.1 | 97.1/87.6 || 97.7/97.5 | 97.9/97.3 || 97.9/97.5 | 97.9/97.3 || 96.9/94.8 | 98.1/97.5 | 96.9 | 96.7
20 95.9/94.8 | 93.8/78.7 || 95.9/95.2 | 97.9/97.5 || 96.5/96.1 | 97.9/97.5 || 94.8/93.2 | 97.7/97.3 95.7 | 96.7
15 89.9/87.2 | 85.9/66.5 || 94.2/93.2 | 94.0/93.6 || 90.5/89.4 | 94.2/93.8 || 93.4/92.5 | 93.4/92.8 || 93.0 | 96.3
10 69.6/66.7 | 69.0/50.5 || 78.0/76.0 | 85.5/84.1 || 58.4/58.0 | 84.7/84.0 || 79.9/77.6 | 85.5/84.1 87.8 | 94.8
5 28.2/28.2 | 46.4/36.0 || 52.6/49.5 | 72.3/70.4 || 16.4/16.4 | 66.0/64.8 || 54.9/51.3 | 72.7/71.0 68.7 | 91.1
0 10.1/10.1 | 28.1/24.2 || 25.7/24.0 | 51.5/48.7 8.5/8.5 42.9/41.2 || 27.9/24.9 | 54.4/51.1 371 | 874
-5 9.9/9.9 16.4/15.1 || 11.0/11.0 | 31.9/29.4 9.5/9.5 24.6/23.4 || 11.4/11.4 | 33.7/30.8 13.2 | 81.6

No silence model Log-normal PMC Log-add PMC DPMC silence Log-normal
adaptation silence model adapt. silence model adapt. model adaptation PMC adapt.
SNR F2 F3 F2 F3 F2 F3 F2 F3 F2 F3

[dB] Corr/Acc | Corr/Acc Corr/Acc | Corr/Acc Corr/Acc | Corr/Acc Corr/Acc | Corr/Acc Acc Acc
35 97.7/96.5 | 97.5/95.0 || 97.5/96.1 | 97.9/96.7 || 97.7/96.7 | 97.9/97.3 || 97.7/96.1 | 97.7/97.5 || 96.3 | 96.1
30 97.7/95.7 | 96.1/89.8 || 97.5/96.3 | 97.5/97.5 || 97.5/96.3 | 97.9/97.9 || 97.5/96.5 | 97.9/97.9 || 96.3 | 97.1
25 95.4/91.7 | 93.0/84.9 || 95.7/94.6 | 96.3/96.3 || 95.9/95.0 | 95.9/95.9 || 96.1/95.2 | 96.1/96.1 || 95.5 | 96.5
20 87.4/80.8 | 84.3/72.9 || 93.0/92.1 | 93.6/93.4 || 92.7/91.9 | 93.8/93.8 || 92.8/92.1 | 94.0/94.0 || 94.2 | 96.3
15 72.5/66.5 | 68.7/59.2 || 85.9/84.5 | 91.7/91.7 || 86.3/85.5 | 90.7/90.7 || 86.1/85.5 | 91.1/91.1 || 94.0 | 95.9
10 50.9/46.6 | 49.7/43.7 || 72.7/71.4 | 87.4/87.4 || 72.9/71.4 | 84.5/84.3 || 72.3/70.6 | 87.2/87.2 || 90.1 | 95.5
5 26.5/25.1 | 30.2/27.9 || 60.4/57.3 | 78.7/78.7 || 59.0/56.3 | 75.2/74.8 || 58.8/56.5 | 82.6/82.6 || 90.7 | 95.9
0 15.3/15.3 | 14.3/13.5 || 46.2/43.9 | 63.4/62.7 || 41.8/38.7 | 55.1/54.5 || 43.9/42.0 | 75.4/75.2 || 89.9 | 95.2
-5 11.0/11.0 | 10.8/10.8 || 33.5/28.4 | 49.7/48.9 || 27.1/24.2 | 27.9/27.9 || 32.1/27.3 | 66.9/66.5 || 88.6 | 94.4

Tab. 1  Comparison of SRS results across the infIX R (the first column) when no model adaptation is used (the second wide column), the
log-normal PMC silence model adaptation is performed (the third wide column), the log-add PMC silence model adaptation is applied
(the fourth wide column), the DPMC silence model adaptation is performed (the fifth wide column) and the log-normal PMC adaptation
of the whole model set is used (the last wide column). Subcolumns in the wide columns specify types of noise.

four different synthetically generated noises (white, >, F3;  in order to achieve the specifi¢ddVR. The power of speech
description see below) with wide range of SNR and numeralseeded for SNR computation was obtained with the use of
dictation task [8]. forced alignment (details can be found in [8]).

The results of the testing are the dependences of speech
e : recognition performance on SNR of currently used testing
4.1 Epecm(_:atlon of a Testing Method and noise. The speech recognition performance is evaluated by

valuation of Results
parametersacc (Percent Accuracy [%]) andorr (Percent

The testing part of the database Speechdat(E) [1] wagorrect [%]) [16]. The parametewrr does not account for
selected with the intention not to overlap with the training partnsertion errors, in this case for extra inserted commands.
of the database. Testing records (each from different persormhe insertion errors are often created during pauses and this
contained ten Czech numerals zero to nine in random ordek frequently related to inappropriate silence model setting.
The length of the testing database was approximatelly 30 minfhis is why the difference betweemrr andacc parameters
utes. The pauses between the testing words have random durs been found useful for the SRS performance evaluation.
tion which well simulates real applications. The extent of thef both mentioned parameters show similar results then it
database was set in order to be computationally feasible to tegén be supposed that the extra inserted command error was
each SRS configuration in a quite extensive numbe$&tR  suppressed and it consequently indicates the accurate silence
values and noise types. model adaptation. Grammar scale factor and word insertion

A synthetically generated stationary white noise andoenalty values [16] were set to 5.0 and 0.0 respectively in
three types of stationary narrowband noises were used for tegt experiments as no significant improvement of results was
ing of the robustness of SRS against the additional additivachieved by attempt to optimize them in the tested task.
noises. The three types of stationary narrowband noises were
generated by white noise filtering in purpose to affect the first
(noise F;, frequency band between 0.3 and 0.9 kHz), the sec4.2  Results
ond (noisefy, frequency band between 1 and 2.5 kHz) or the
third (noiseF3, frequency band between 2.5 and 3.4 kHz) for- The recognition results for five SRS configurations are
mants. These noises are added to the testing speech recopdssented in Tab. 1. The first configuration titled “No silence
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model adaptation” is used as a reference. The results for thigationary character rather than speaker non-speech sounds
configuration are obtained with the use of the original silencgincluded in pre-trained silence model) is estimated. This is
model trained on Speechdat(E) database. It can be seen that the very important fact for a correct silence model adaptation.
recognition system is able to operate well under the assumption The dynamic silence model adaptation technique is
of very highSNR (SN R > 35 dB) for noises not present dur- mathematically described as follows. At first, the PSD of
ing the training stage. If an unexpected type of noise occursoise has to be estimated from noisy speech signal. For
(like Fy, F», F3) the SRS tends to decrease its recognition rethis purpose a minimum tracking procedure is utilized on
sults rapidly even if th& N R parameter is still relatively high smoothed noisy observation vectors in the power spectral
(SNR > 20 dB). Moreover the difference betweenrr and  domain. The recursive filter of the first order is used for the
acc is high that means an unstable performance of SRS duringbservation vectors smoothing
speech pauses. The second to the fourth SRS configurations in
Tab. 1 presume selected PMC silence model adaptation. In

. .. . . N 2 N 2
this case the original silence model is adapted to the tested ‘0(7—)‘ — a’o(T _ 1)‘
noise prior to the recognition. The results show appreciable
improvement of SRS performance for all tested noises whefyhereq specifies the extent of smoothing. The PSD estimate
SNR > 15 dB. The difference betweemrr andacc is much  of noise is obtained as the minimum within time interval
lower than in the previous case and verifies the stability of SRS
performance during speech pauses. The best results of the si- 5 .
lence model adaptation almost in all ranges were obtained by pi(r)=6- mm{

log-normal PMC method. The DPMC method performed very N ) )
well under the assumption of very lofiN R. In comparison where parametef specifies the compensation of the final PSD

with the other methods the log-add PMC method yielded littlefStimate. Secondly, log-add PMC compensation equation is
worse results. On the other hand it is much computationallperformed (similarly to eq. 9)

cheaper and it doesn't need the noise variance estimation. The N . _

last part of the table shows the results of SRS when the whole fii = log [exp () + fui(7)] | (19)

HMM set is adapted by the log-normal PMC. The main targetvhere/i!, ;! andji?(7) are the compensated static means, the
of this part of the table is to compare the results of uncomoriginal (trained) static means and the noise PSD estimate re-
pensated SRS, the SRS with silence model adaptation and tsgectively. The compensated features in log-energy domain are
totally compensated SRS for a wide range5éf R. It can be  then transformed into the cepstral domain again via the DCT.
stated that the compensation of the whole model set is desirable The suggested dynamic silence adaptation technique
if SNR < 15 dB and brings a benefit especially for narrow- was tested with use of synthetig( ;) and real background
band noises when corrupted part of speech spectra can be suises to simulate a real application performance. FheR
stituted by the part uncorrupted by noise. The main disadvartomputation and evaluation of recognition performance is the
tage of the compensation of the whole model set is a relativelgame as in the previous section. Four groups of background
high computational load caused by the huge number of modejoises were formed. The first and second group (labels
to be adapted. A detailed analysis of computation complexity | £” in Tab. 2) contain stationary synthetic narrowband
of PMC approaches can be found in [13]. noisesF; and F;. These noises are the same as the ones
used in the previous section and allow us to compare the
noise compensations with an ideal PSD knowledge and the

5. Practical Design and Testing of Dy-  dynamic silence model adaptation. The third group (label
“office” in Tab. 2) contains several different noises produced

namic Silence Model Adaptatlon by an air-conditioner, computer fans and a vacuum cleaner.
The fourth group (label “car” in Tab. 2) contains various

In the previous sections the ideal configurations ofmoises recorded in a car. The recognition results for two
the silence model adaptation by PMC methods were teste@RS configurations are presented in Tab. 2. The first one
It means that an accurate additional noise power spectrétled “No silence model adaptation” is used as a base for
density (PSD) estimate was supposed. Unfortunately, in theomparison. When no silence model adaptation is made then
real application like a telephone one, there is no direct accegie results show an unstable SRS performance during speech
to the noise PSD. The suggested practical solution calledauses (the big difference betweenr andacc parameters,
dynamic silence model adaptation takes the advantage of noisghich is caused by a high word insertion error rate). If the
PSD estimation based on minimum statistics [15]. Since theroposed silence model adaptation was used (the column
covariance matrix of the background noise is difficult to betitted “Dynamic silence model adaptation”) then the SRS
accurately estimated, the log-add PMC method was appliegerformance and its stability during pauses were improved.
for the silence model adaptation. The block scheme of th&he reliable SRS performance (recognition performance and
proposed dynamic silence model adaptation is presented actcuracy are above 90%) is achieved$av R > 15 dB in all
Fig. 3. Noise PSD is continuously estimated during thefour environmental groups £”, “ F3”, “office” and “car”).
input signal parameterization and this estimate is used fdPresented results confirmed that the proposed dynamic silence
the log-add PMC silence model adaptation. Because thadaptation is the robust and effective method especially for
spectral minima tracking procedure is used for the noise PSRlephone applications and can be seen as the alternative
estimation, the additional noise with lower power and moresolution to the VAD based feature vector selection.

2

+(1—a) ‘()(T T, an

T 2)”
Oi(7)| } , (18)

=T
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No silence model adaptation Dynamic silence model adaptation

SNR F1 F3 Office Car F1 F3 Office Car

[dB] || Corr/Acc | Corr/Acc | Corr/Acc | Corr/Acc || Corr/Acc | Corr/Acc | Corr/Acc | Corr/Acc
35 97.9/95.7 | 97.5/95.0 | 97.9/96.9 | 97.9/97.1 || 97.9/97.3 | 97.9/97.7 | 97.9/97.5 | 97.9/97.7
30 98.1/93.6 | 96.1/89.8 | 98.5/97.5 | 98.3/97.5 || 98.1/97.5 | 98.3/98.3 | 98.1/97.9 | 98.3/98.1
25 97.1/87.6 | 93.0/84.9 | 98.1/97.1 | 98.5/96.3 || 97.9/97.3 | 96.7/96.7 | 97.5/97.3 | 97.7/97.5
20 93.8/78.7 | 84.3/72.9 | 96.1/93.2 | 96.5/90.7 | 96.9/96.3 | 94.2/94.2 | 95.7/95.4 | 96.7/96.3
15 85.9/66.5 | 68.7/59.2 | 89.4/84.7 | 89.0/77.4 || 92.8/91.9 | 90.3/89.9 | 89.4/88.8 | 91.9/91.3
10 69.0/50.5 | 49.7/43.7 | 66.3/61.9 | 62.5/51.6 || 82.4/80.8 | 81.2/81.2 | 67.5/67.3 | 68.3/67.7
5 46.4/36.0 | 30.2/27.9 | 32.5/30.2 | 27.5/24.2 || 60.9/59.2 | 66.9/66.7 | 30.8/30.8 | 33.1/32.9
0 28.1/24.2 | 14.3/13.5 | 13.2/12.8 | 10.3/10.1 || 37.9/37.1 | 41.6/41.4 | 10.1/10.1 | 11.2/11.2

Tab. 2  Comparison of SRS results when no silence model adaptation and the dynamic silence model adaptation were applied in the real environ-

ment testingg = 0.75, 8 = 2.5).

Speech

signa Speech ot Information Society and GBR 102/03/H085.
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(MFCC)
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Various silence model adaptation possibilities were
studied with the aim to make the SRS more robust. It was
shown that the PMC methods are well suited for this purpose [g]
as they are able to adapt the originally trained silence model
(which can well describe the talker’'s non-speech activity) to
the unknown (and during training stage unseen) background[gl
noise. Well performed silence model adaptation improves
stability and performance of SRS for the wide variety of
background noises whe$wW R > 15dB.

A practical solution of dynamic silence model adapta- (11
tion was designed. The original approach containing the nms:ilz]
estimation procedure with log-add PMC applied to noise model
was suggested. Simulations confirmed a great benefit of this
method to the SRS results and their stability in the supposegh3s)
telephone applications. The main advantages of this solution
are no extra voice activity detector and a relatively low compu-

tational load. [14]
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