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Abstract. Complementary active RLC circuit models with 
a voltage-controlled voltage source (VCVS) and a current-
controlled current source (CCCS) for the second-order 
autonomous dynamical system realization are proposed. 
The main advantage of these equivalent circuits is the 
simple relation between the state model parameters and 
their corresponding circuit parameters, which leads also to 
simple design formulas. 

The state model can be used as a mathematical tool 
for the numerical simulation of dynamical system behavior 
as well as a prototype for the electronic circuit realization 
using available circuit technique. From the complete state 
equations either the general integrator-based circuit block-
diagram (typical for both canonical forms) or the corres-
ponding RLC active circuit (typical for Chua’s oscillator) 
can directly be derived. In both cases only a single PWL 
network element is used utilizing various types of active 
electronic blocks operating in both voltage and current 
modes (op-amps, current conveyors, trans-impedance am-
plifiers, etc.). 
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For the optimized low-sensitivity model first the cor-
responding integrator-based block diagram has been de-
rived for both the second- and the third-order cases [9]. 
Intention of the paper is to propose the corresponding RLC 
active circuits where, unlike the Chua’s model, the circuit 
parameters have direct relations to the model parameters. 

1. Introduction 
Autonomous piecewise-linear (PWL) systems of class 

C can be described by the general state matrix form [3], [4] 
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the normalized elementary PWL feedback function (Fig. 1) 
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contains the regions D0 and D+1 (D-1). The dynamical be-
havior of the system is determined by two characteristic 
polynomials related to these individual regions [3]. All the 
systems of Class C having the same characteristic polyno-
mials are qualitatively equivalent and they are related by 
linear topological conjugacy [4]. Typical systems of this 
class are the Chua’s model, both its canonical forms [3], 
and also the recently derived optimized state model having 
the minimum sum of relative eigenvalue sensitivity squares 
with respect to a change of the individual state matrix pa-
rameters [7]. Just this low-sensitivity model is very useful 
as a prototype for the practical chaotic system realization in 
a form of electronic circuit. It provides the possibility to 
utilize a block-decomposed form of the state matrix so that 
the design procedure can be started from the optimized 
second-order system and then extended by a simple way to 
the optimized higher-order case [7], [9]. 

Fig. 1. Simple memoryless PWL feedback function. 

2. Second-Order State Models with 
Optimized Eigenvalue Sensitivities 
The most frequently occurring autonomous dynamical 

systems have their complex conjugate eigenvalues in both 
regions of PWL function (Fig. 1), i.e. for the inner region 
(D0) it is (µ1,2 = µ´ ± jµ´´) and for the outer regions (D-1, 
D+1) it is (ν1,2 = ν´ ± jν´´). Then the associated characteristic 
polynomials are defined as follows 

(D0):   , (3a) =−−= ))(()(P 21 µµ sss )(det 0A1−s

(D-1, D+1): =−−= ))(() 21 νν sssQ( )(det A1−s  , (3b) 
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where relation between state matrices can be expressed [3] 
T

0 bwAA +=  (4) 

lues and one real eigenvalue in both outer and inner regi-
ons, (i.e.  ν1,2 = ν´ ± jν´´,  ν3 - real;  µ1,2 = µ´ ± jµ´´, µ3 - 
real). Then the state matrix and the vectors have the form 

and 1 is the unity matrix. The optimized low-sensitivity 
state model (1) have been chosen in the simplified and de-
composed complex form [7], in which the corresponding 
state matrices are 
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and parameters b1, b2, and w2  are given by (6). Substituting 
into (4), we can easily derive that the state matrix associ-
ated with inner region has the lower block-triangular form 

and the optimizing coefficient K is given as the real root of 
the quadratic equation 
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where the auxiliary parameter M is 

so that such a model has very low eigenvalue sensitivities 
both in outer and inner regions of the PWL feedback func-
tion. The complete state equations of the optimized third-
order PWL autonomous system can be then rewritten into 
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In the vectors b = [ b1, b2] T and w = [ w1, w2] T one of the 
parameters can be chosen, e.g. w1=1, while the others are 
obtained as [9] [ ]
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Then the complete state equations of the optimized second-
order PWL autonomous system can be written as 
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( )ywxhbyxy 22 ++′+′′= νν&  , (8) 
where the basic individual parameters are separated. How-
ever, parameters b2 and w2 are given by more complex for-
mulas (6b,c) but the final required effect, i.e. the minimum 
eigenvalue sensitivities, has been achieved by this. 

where the parameters b2 and w2 are given by the formulas 
(6b,c). The corresponding integrator-based circuit block 
diagram, suitable also as a prototype for practical realiza-
tion, is shown in [7]. All the sensitivity functions are ob-
tained in a complex form, so that also the sensitivities ex-
pressed separately for the eigenvalue real and imaginary 
parts, can easily be derived. Then the minimum sums of 
relative eigenvalue sensitivity squares with respect to the 
change of the individual state matrix parameters can be 
expressed for both the real and imaginary parts generally as 

4. Active RLC Circuit Models with 
PWL Controlled Sources 
To obtain general results in circuit model synthesis 

the second-order system described by the general state mat-
rix equation (1) is considered, i.e. 

21),(),( 22 =′′=′ ∑∑ ijrijr aSaS λλ  , (9) 
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where in the outer regions (D-1, D+1)  λ = ν´, λ´´ = ν´  and in 
the inner region (D0)  λ´ = µ´, λ´´ = µ ´´ [8]. 

which evidently includes also the optimized state model 
introduced in Chapter 2. In the next part two RLC circuit 
models containing voltage- and current-controlled sources 
and possessing simple design formulas are shown. 

3. Third-Order State Models 
Utilizing the results for the second-order systems, the 

third-order model with upper block-triangular state matrix 
containing complex decomposed second-order submatrix 
can be derived [3]. 

4.1 Circuit Model Utilizing VCVS 
Consider the autonomous RLC circuit introduced in 

Fig. 2 containing voltage-controlled voltage source Suppose one pair of the complex conjugate eigenva 
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(VCVS) with PWL transfer characteristic function 
u0=f(u1+R2i2) having three segments (Fig. 3) expressed as E

ux 1= ,     
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Then the corresponding normalized capacitance, inductan-
ce and all resistances are Choosing the capacitor voltage u1 and the inductor current 

i2 as the state variables, both Kirchhoff’s equations of this 
circuit can be written in the basic form 
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written into the normalized forms 
and then rewritten to the complete (non-normalized) state 
equation form, i.e. ( )[ ] [ ]
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Comparing them with the general matrix form (15) the 
following equations can be obtained 
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and then utilized as independent formulas for designing the 
individual circuit parameters. For the case when α and k 
are chosen as free parameters the results are summarized in 
the following design formulas, where both the general and 
optimized state models are considered. 

Fig. 2.  Second-order autonomous circuit with PWL voltage source. 
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Utilizing the reference values of voltage E (Fig. 3), resis-
tance R0, and capacitance C0 the normalized state variables 
including the time scaling can be given as 1A 211 a

k
β

+= νβ ′′+=
k

1
 
,
 



16 J. POSPÍŠIIL, Z. KOLKA, S. HANUS, J. PETRŽELA, J. BRZOBOHATÝ, OPTIMIZED SECOND-ORDER DYNAMICAL SYSTEMS… 

( ) ( )221
2

10
2

2

4221
1

2

12 1
d

d uGih
C

BBu
C

GGGBi
C

B
t

u
+

−
+

+−
+

−
= . 

0A ( )2211 ba
k

++=
β ( )









′′−′′
′−′

+′′+=
Kk µν

νµνβ 2

1
 

,
  (26a,b) 

where the parameter β is generally given as Utilizing the reference values of voltage E (in Fig. 5 
I0=E/R0), resistance R0, and capacitance C0 the normalized 
state variables including the time scaling can be defined as ( ) 22121122
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4.2 Circuit Model Utilizing CCCS 

Then the corresponding normalized inductance, capacitan-
ce, and all resistances are Consider the autonomous RLC circuit (Fig.4) 

containing current-controlled current source (CCCS) with 
the PWL transfer characteristic function i0=f(i1+G2u2) 
having three segments (Fig. 5) expressed as 
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Denoting k=sgn(R0C0) the state equations (26) can be re-
written into the normalized forms 
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Fig. 4.  Autonomous 2nd order circuit with PWL current source. 
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Comparing them with the general matrix form (10) for the 
second-order system the following equations are obtained  
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,  (31a,b,c,d) 22 gw =Fig. 5.  Transfer PWL characteristic of CCCS. 

Choosing the inductor current i1 and the capacitor voltage 
u2 as the state variables, both Kirchhoff’s equations for this 
circuit can be written in the basic form 

and then utilized as independent formulas for the design of 
the individual circuit parameters. For the case when β and k 
are chosen as free parameters the results are summarized in 
the following design formulas where again both the general 
and optimized state models are considered. ( ) 0
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and where the parameter α is generally given as 
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Any other details about the realization conditions of the in-
dividual circuit elements for both circuit models are pre-
sented in [10]. 

The corresponding circuit models can easily be deve-
loped from circuits shown in Fig. 2 and Fig. 4 and then 
used as the prototypes for the practical realization of the 
optimized chaotic oscillator. 

5. Conclusion 
This contribution deals with the second-order nonlin-

ear dynamical systems and their realizations using active 
RLC circuits in which the VCVS and CCCS with three-
segment PWL symmetric transfer characteristics are con-
sidered as the active elements. This is suitable especially 
for voltage- and current-mode realizations. The dynamical 
behavior of such a system is determined by two sets of 
complex conjugate state matrix eigenvalues associated with 
the corresponding regions. 

The contribution presents the complete and normal-
ized state equations in which the simple relation between 
the model and the circuit parameters entails also very sim-
ple design formulas in the synthesis procedure either in ge-
neral or optimized (low eigenvalue sensitivities) forms. 
Circuits proposed represent one possibility of the second-
order system realization and can be easily extended also for 
the third-order system utilizing the block decomposition of 
the state matrix [7]. Such higher-order equivalent circuit 
can model also a chaotic behavior of the system. 
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