
32 V. ŠÁDEK, J. SVAČINA, ANALYSIS OF HOMOGENEOUS COPLANAR STRIP LINE 

Analysis of Homogeneous Coplanar Strip Line 

Václav ŠÁDEK, Jiří SVAČINA 

Dept. of Radio Electronics, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic 

sadek@feec.vutbr.cz,  svacina@feec.vutbr.cz 

 
Abstract. The goal of this work is to introduce a new, 
maybe complicated but in the final result mathematically 
simplest model of the coplanar strip line (CPS). In contrast 
to the usual method based on elliptical integrals the sim-
plest circular inversion is applied. The main advantage is 
that our solution is mathematically less complicated but its 
accuracy is a little bit lower. The maximal error of the 
model described lies within the restricted interval between 
–3% and 3%. Nevertheless the final formula is useful for 
the practical engineering application. 

In the article only the pure structure is analyzed. In 
this configuration without the dielectric substrate the CPS 
is not realizable. For the thick dielectric layer, in the first 
approach it is possible to apply the average value of per-
mittivity below and above the CPS, but this is not accurate 
for the thin one. An analysis of the CPS with thin dielectric 
layer is now the aim of the work. 

The CPS structure has already been analyzed, but the 
existing and often cited model [2], [3] is based on elliptical 
integrals. It is a very useful method, but not very practical 
for designers’ everyday use. 

One of the possibilities of simplifying the CPS model 
is to use another type of conformal mapping (CM). The 
common method is based on Schwarz-Christoffel integral, 
but there are more CMs such as the Moebius transform and 
its special form called the circular inversion. 
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1. Introduction 
2. Conformal Mapping The coplanar strip line (CPS) is a member of the 

group of symmetrical planar microwave structures. Nowa-
days, when problems of leaky waves, spurious radiation 
and EMC of asymmetrical planar structures grow, the in-
terest of designers has recently focused on symmetrical 
structures [1]. The main advantage of this type of transmis-
sion lines is that symmetrical currents mutually compensate 
their effects; much better than asymmetrical structures do. 

Let us have a CPS with the width of strips w and with 
the separation between them s in Gaussian plane called p at 
a distance η0 (η0 is the function of s and w) below the real 
axis ξ (Fig. 1) and let us define the ratio1  

( ) ssw += 2κ  .  (1) 

Let us assume that the thickness of the electrodes is zero. 
The last premise is propagation of quasi-TEM wave in the 
CPS. Afterwards, easy CM as shown below is applicable. 
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The error of the method described grows with the ra-
tio κ as shown in the end of this article and therefore it 
seems to be a good idea to split the analysis into two cases: 
one for the narrow CPS, second for the wide CPS. The 
border between both cases is determined from the first step 
of the transform as the case when angle ψ = π/4 (Fig. 2). 
The reason is given in the following text. 

2.1 Narrow CPS 
The procedure of the conformal mapping consists of 

two steps. The first of them is the transform of the CPS to 
two cylindrical segments, the second rests in their analysis. 

                                                           
Fig. 1. The transform from the CPS to the cylindrical segments 1 Another ratio k is used in [2] and [3]. The relation between both ratios is 

k = 1/κ. 
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The CPS placed in the position as described in the 
previous text, shown in Fig. 1 and called plane p is easily 
transformable into the cylindrical segments in plane z. The 
relevant formula is from [4] 

j2 0 −= pz η  (2) 

where α1 is the dimension of the structure in plane m and 
εr is the relative effective permittivity of the space inside 
this structure. The final form of the characteristic impedan-
ce of the narrow CPS Z0n is given by a parallel combination 
of interior and exterior spaces 

0 n 1
r

120Z = ⋅α
ε

. (7) 
where η0 = (sw/2 + s2/4)½. It is the circular inversion 
with the stretch and the shift in the imaginary direction. Of 
course this conformal transform may also be referred to as 
the Moebius transform in a special form. 

The point m = α1 is an image of the point t = r1, which is 
an image of w = u1, the image of z = x1 = 1. Eqn. (3) gives 
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This formula enables to determine the condition for 
the border between the narrow and the wide CPS based 
only on its own geometric parameters and not on angle ψ. 
The cylindrical segments cover a unit circle |z| = 1, so 
that the end-point of the segment is z = ejψ. Substituting 
this with the condition ψ = π/4 in equation (1) we get a 
new condition for the narrow CPS κ ≤ 3 + 
2√2 ≈ 5.82. 

eqn. (4) yields 
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The next step is an analysis of the cylindrical seg-

ments [5]. Because of the circular symmetry of this struc-
ture, the exterior |z| > 1 of the unit circle is 
exchangeable with its interior |z| < 1. Moreover, the 
shape of cylindrical segments after the transform from the 
exterior to the interior remains absolutely identical. 

and finally eqn. (5) leads to 
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Consequently the impedance of the homogenous narrow 
CPS is given by the formula This structure has two axes of symmetry, axes x and 

y. This fact allows analyzing only one quadrant to have a 
complete description of the cylindrical segments. 0n 1

r r

120 1 cos 120ln ln
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Z r+
= =

ϕ
ϕε ε

. (11) 

Therefore, only one quarter of a unit disk is analyzed 
(Fig. 2 plane z). The last problem, which must be solved, is the dependence 

of angle ϕ on ratio κ. The start of this problem solution 
consists in the definition of the ratio κ and the stretch η0 The cylindrical segments analysis contains a sequence 

of three transforms [5] as shown in Fig. 2. The first of them 
is the transform z→w [6] 
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Inner endpoint of CPS located in plane p (p1 = s/2 - jη0) 
transformed by the transform (2) maps itself onto the point 
z1 = ejψ in plane z. So 

and finally t→m 
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where symbols z, w, t, and m are complex variables in the 
planes, which are shown in Fig. 2, and ϕ is the angle from 
plane w. Its magnitude is exactly φ = ψ/2. The proof is 
given at the end of this article in Appendix B. 

and therefore 

1tan =
2

−κψ
κ

. (14) 
The characteristic impedance of the structure in Fig. 2 

in plane m is also the characteristic impedance of all other 
structures in Fig. 2 and also the characteristic impedance of 
the interior part of cylindrical segments Z0int  

Since angle ϕ is contained in formulas (9), (10), (11), it is 
necessary to recalculate the relation for tanψ  to its equi-
valent using angle ϕ. Because of the notation of r1 
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sinϕ  and tanϕ  are important for this analysis. They are 
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and both expressions (16) and (17) together with (15) give 
a final expression for r1  
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Fig. 2. The procedure of cylindrical segments analysis. which together with (10) and (7) leads to the final version 
of the characteristic impedance formula 
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for κ ≤ 5.82  or  w/s ≤ 2.41 . 

2.2 Wide CPS 

The error curvature of the structure in Fig. 2 grows 
rapidly for the wide CPS (κ > 3 + 2√2 ≈ 5.82) and 
simultaneously the error of the characteristic impedance 
(19) also grows. 

There is one simple solution to this problem – simply 
interchange the PEC (full line) and the PMC (dashed line) 
in plane z. The easiest way to do it is to rotate plane z 
counterclockwise (multiply by complex unit j) 

j′ =z z  (20) (m)

as shown in Fig. 3. 

Subsequently the analysis continues in the same way 
as in the case of the narrow CPS. Only the PEC and PMC 
are interchanged. The characteristic impedance of the 
interior Z0int is in the case of the wide CPS given as  
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Fig. 3. The analysis of the wide coplanar strips. 

The only difference is in the description of angle ϕ´. The 
auxiliary angle ψ´ is complementary to angle ψ where all symbols are the same as in (6). 

ψπψ −=′ 2  , (23) Because of the equivalence of the interior and the 
exterior of the unit disk in this case (see appendix A) the 
impedance of the wide CPS Z0w is and therefore 

1 2tan tan
2 tan
π ′ = − = =  − 

κψ ψ
ψ κ 1

 . (24) 2 2

0w
1 r

r

30 30 30
1 cosln

sin
r

Z
r

π π
= = =′+⋅ ⋅⋅

′
ϕε α εε

ϕ

2

2

π  . (22) 



RADIOENGINEERING, VOL. 13, NO. 3, SEPTEMBER 2004 35 

The next procedure is the same as in the case of narrow 
CPS (15) - (18). The tangent of the half argument ϕ´ is 0,
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where K(k) is the complete elliptic integral of the first kind 
with modulus k = 1/κ. The complementary modulus is 
k´= (1 – k2)½. 
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and sinus of the same argument is 
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Now after repeating the technique described above we get 
the expression for the coordinate r2 in plane t 
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The characteristic impedance of the wide CPS is from (22) 
and (27)  

Fig. 4. The error of the CS analysis. 
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for κ ≥ 5,82  or  w/s ≥ 2,41 . 

3. Verification 

To verify the described CPS analysis [5], a simple m-
file in MATLAB was used. It is based on the numerical 
Schwarz-Christoffel mapping [7] in SC-toolbox [8]. 

ang=pi*i*linspace(0,90,10)/180; 
pp=[0 exp(ang)]; 
p=polygon(pp); Fig. 5. The error of the described model (19) and (28) in compa-

rison with (29). for x=3:10 
    f=rectmap(p,[x 11 1 2]); 

The discontinuity in the graph of the error (Fig. 5) is due to 
the difference in the two submodels. 

    m=modulus(f); 
    Z(x-2)=60*pi*m; 
end; 

A comparison of the described model and this simple mo-
del based on numerically solved conformal mapping is 
shown in Fig. 4. The error of the proposed method is less 
than 3 % for angle ψ below π/4 = 45°, where the described 
model works, while for greater angles ψ it grows dramati-
cally. The cause of this error is shown in Fig. 2, planes w 
and m (also plane t, but not visible) as additional deforma-
tion of straight borders of transformed areas. It is the visu-
alization of the error of the transform (3). 

4. Discussion and Conclusion 
The present work describes a new simple method for 

CPS analysis. Compared with the model from [3], the new 
model exhibits a maximum error of below 3%.  

In the future the thin dielectric layer will be added 
under the CPS. The results of the model described here and 
the model with dielectric substrate will be compared with a 
numerical model(s) because the model [2] is only for the 
thick dielectric layer and as regards the model from [3] 
there is not information about the accuracy of the thin 
dielectric layer.  

Dividing the analyses into two parts as described 
above eliminates the great error for greater angles.  

The whole model compound of the two submodels for 
the narrow CPS and for the wide ones is compared with the 
model described in [2] and [3] 

Our model and the used reference model from [3] are 
both based on conformal mapping, although each of them 
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and this equality is possible only in the case of ψ = 2φ or 
φ = ψ/2. 

in a different way. Our model so may be regarded as one of 
its possible alternative.  
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Let us have the cylindrical segments located in plane 
z (see Fig. 1). Two electrodes (PEC) are situated on the 
circumference of the unit circle between two pairs of 
points, the first pair is z1 = ejψ and z2 = e-jψ and the second 
is z3 = –ejψ and z4 = –e-jψ. After the circular inversion ap-
plied on the whole plane z References 
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