
22 M. GALABOV, IMPLEMENTATION OF IMDCT BLOCK OF AN MP3 DECODER THROUGH OPTIMIZATION ...

Implementation of IMDCT Block of an MP3 Decoder
through Optimization on the DCT Matrix

Miroslav GALABOV

Dept. of Computer Systems and Technologies, University of Veliko Turnovo, T. Tarnovski 2, 5003 V. Turnovo, Bulgaria

plam@vali.bg

Abstract. The paper describes an attempt to create an ef-
ficient dedicated MP3-decoder, according to the MPEG-1
Layer III standard. A new method of Inverse Modified Dis-
crete Cosine Transform by optimization on the Discrete
Cosine Transform (DCT) matrix is proposed and an as-
sembler program for Digital Signal Processor is develo-
ped. In addition, a program to calculate DCT using Lee's
algorithm for any matrix of the size 2M is created. The ex-
perimental results have proven that the decoder is able to
stream and decode MP3 in real time.

Keywords
IMDCT, MP3 decoder, bitstream, DSP.

1. Introduction
MPEG-1 Layer III is a highly compressed digital

audio format. The Moving Pictures Expert Group standar-
dized it in 1991. MPEG was formed in 1988 by ISO/IEC
organizations to develop generic coding standards of mo-
ving pictures, audio and systems containing both [1]–[2].

2. Functionality
The input to the MP3 decoder is a bitstream and the

decoding process turns this into samples which are sent to
a digital to analog converter (DAC) add-on board. The
MP3 stream is divided into frames where each frame con-
tains 27 ms of music data. The decoding process can be
divided into six blocks and these are implemented indepen-
dent each other (Fig. 1).

The first three blocks – Huffman decoding, descaling
and reordering – convert the original MP3 bitstream into
576 frequency lines divided into 32 subbands with 18 fre-
quency lines in each. This is the format which the last three
blocks – antialias, Inverse Modified Discrete Cosine Trans-
form (IMDCT) and filter bank – use. These blocks trans-
form the MP3 from the frequency domain into the time
domain. A more in-depth description of the decoding pro-
cess as well as MP3 encoding can be found in [1-2].

The task of the Huffman decoder is to transform in-
coming compressed data into scalefactors and symbols
representing the 576 original frequency lines. The scale-
factors are then used in the next block (the descaling block)
to rescale the symbols into non-scaled frequency lines.

Huffman
Decoding Descaling Reordering

Bitstream

Alias
Reduction IMDCT Filter Bank

Synthesis

Pulse Code
Modulation
Channel

Fig. 1. The MP3 decoding process.

2.1 Huffman Decoder
The decoder compares the input sequence with infor-

mation in the Huffman table and produces a symbol when
a match is found. Information on what table to use for any
given frame is found in the frames side information. Output
from the Huffman decoder is 576 scaled frequency lines
(symbols) which are divided into three partitions:

• Big-values contain the lowest frequency lines and are
coded with the highest precision. Normally the scaled
value is between -15 and 15, but higher precision can
be obtained by using an escape sequence. When the
decoder finds the value 15 it assumes that higher
precision is needed and reads additional bits from the
input stream. This value is then added to the original
value of 15. The number of bits is specified in the
Huffman table.

• Countl represents the higher frequency lines and does
not need the high precision, they are simply coded
with the values 1, 0 and –l.

• Rzero represents the highest frequency lines. They
have simply been removed by the encoder. These va-
lues are filled with zeros by the decoder.

2.2 Descaling
The descaling block rescales Huffman decoded scaled

and quantized frequency lines. The result from the Desca-
lizer is the original frequency lines. What equations to use

RADIOENGINEERING, VOL. 13, NO. 4, DECEMBER 2004 23

depend on the windowing function used in the encoding
procces? The descaling step must be performed once for
each frequency line in the bitstream.

2.3 Reordering
The reorder block has one task; it reorders the fre-

quency lines within a granule. The way that the frequency
lines are reordered depends on flags in the side information
header. The block works in three different ways depending
on the side information header:

• All frequency lines are reordered.

• Only frequency lines after the line number 36 are re-
ordered.

• No frequency lines are reordered.

2.4 Antialias
The antialias block attempts to reduce the inevitable

alias effects introduced by the use of a non-ideal bandpass
filter. This reduction is done by merging frequencies using
butterfly calculations.

2.5 IMDCT
IMDCT reproduces, in cooperation with the synthesis

polyphase filter bank, time samples from frequency lines.
Given the frequency lines Xk, time samples xi can be obtai-
ned by using the following equation:

()∑
−

=

≤≤⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ ++=

12/

0
0 ,12

2
12

2
cos

n

k
ki nikni

n
Xx π . (1)

In our case, n = 36, which means that the IMDCT takes 18
frequency lines as an input and generates 36 polyphase
filter sub-band samples. These samples are multiplied with
a 36-point window before they can be passed on to the next
step in the decoding process. Windowing contains four dif-
ferent types of windows; the types are normal, short, start
and stop. Information on what type to use is found in the
side information part of each frame. Depending on window
type two different implementations are used.

Producing 36 samples from 18 frequency lines means
that only 18 of the samples are unique. Therefore IMDCT
is said to use a 50 % overlap. The 36 values from the win-
dowing operation are divided into two groups, a low group
and a high group, containing 18 values each. Overlapping
is carried out by interleaving (adding) values from the lo-
wer group with corresponding values from the higher
group from the previous frame.

The general view of the "operation flow" is shown in
Fig. 2.

The entire cosine term for each output can be treated
as a known constant factor based on the combination of i
and k in (1). Some investigation of these terms shows the

symmetry between the different xi. Only half of the values
are uniquely determined. The rest can be obtained as a fun-
ction of the previously calculated terms. The following
symmetry holds:

1
4

0...= ,12 −−= −−
nixx ini

 (2a)

and

1
4

3...
2

= ,123 −= −−
nnixx ini

 . (2b)

Therefore, calculating the first quarter and the third quarter
of all values will be enough to determine the entire set.

18 input values

IMDCT

36 output values

Windowing

18 lower values 18 higher values

last 18 values+

18 output values

block
type

Fig. 2. IMDCT with windowing and overlap add.

2.6 Filter Bank
The synthesis of a polyphase filter bank is the final

step in the decoding process [5]. It exploits aliasing and
windowing to move the subbands back into their frequency
domain origins. The process is naturally divided in two
parts, an MDCT part for translating the aliased subband
signals, and a windowing part to filter out the undesired
aliasing in the translated signal.

• Modified discrete cosine transform: The sub-samples
from the transpose block are ordered is such a way
that the 32 first values are the first sub-sample from
each subband, the next 32 are the second sub-sample
and so forth. The MDCT processes 32 values at a ti-
me using the following equations:

∑
=

=
31

0k
kiki SNY (3a)

and

() (⎥⎦
⎤

⎢⎣
⎡ ++= 1216
64

cos kiNik
π) , (3b)

where Sk are input PCM samples.

The output values Y are stored in a barrel shifter.

24 M. GALABOV, IMPLEMENTATION OF IMDCT BLOCK OF AN MP3 DECODER THROUGH OPTIMIZATION ...

• Windowing: Multiplying the values from the barrel
shifter with the window function, specified in the ISO
standard. 32 Pulse Code Modulation (PCM) samples
are computed each iteration. The MDCT and windo-
wing are performed 18 times for each granule, resul-
ting in 576 PCM samples, i.e. 27 ms at 44.1 kHz.

3. Software Implementation
of the IMDCT Decoder Block
The IMDCT used in MP3 is an 18-point DCT that

produces 36 output values from 18 input values. The
IMDCT can be implemented many ways [2]. The optimiza-
tion on the DCT matrix is the technique currently used by
the decoder.

3.1 Optimizations on the DCT Matrix
A program was developed with the purpose of exami-

ning the DCT matrix and generating the source code direct-
ly. The program tries to minimize the number of multipli-
cations needed by keeping track of previous calculations. If
it finds two identical multiplications, the result from the
first calculation will be fetched and used. It can also find
summations of two identical multiplications, where it can
remove both multiplications and use the previously calcu-
lated summation instead. This significantly increases the
computation speed and the required number of multiplica-
tions will drop from 648 to 256. Thanks to the architecture
of the signal processors, the summations can be done in
parallel using the multiply and accumulate (MLA) instruc-
tion, reducing the number of additions from 612 down to
zero. The synthesis polyphase filter bank uses the output
from the IMDCT calculation. According to the ISO/IEC
11172-3 standard [1], the synthesis polyphase filter bank
must transpose the input before it is being used. To avoid
this, the output from the DCT is rearranged so it can be fed
directly to the synthesis polyphase filter bank instead.

32 input values

MDCT

32 output values

Windowing (512 points)

1024 old values

16

32 output values

+ + +. . .

16 16

Fig. 3. The subband synthesis filter bank divided into two parts.

The frequency inversion has been integrated in the IMDCT
calculation. This improves performance, but it is not cru-
cial to the implementation.

The implementation of the synthesis polyphase filter
bank can be divided into two parts. The first part is a 32-
point modified DCT calculation and the second part is the
windowing and summation of 512 values to produce 32
output samples. A flowchart of the operations can be found
in Fig. 3.

0 31

15

31

63
Fig. 4. Modified DCT matrix redundancy.

A 32-point modified DCT requires 32 × 32 multiplications
using a non-optimized calculation method. Algorithms per-
forming fast DCT computations are available, and based on
the symmetry of the DCT matrix. The problem is that the
modified DCT used by the subband synthesis has to be
translated into a normal DCT before optimizations can be
applied.

The difference between normal DCT and the modi-
fied DCT is the transform matrix being used. For a normal
DCT, the transform matrix Nik for a DCT with size M can
be calculated from the following equation:

() 310 310 ,12
2

cos ≤≤≤≤⎥⎦
⎤

⎢⎣
⎡ += kiki

M
Nik

π . (4)

The matrix used in the original subband synthesis has the
following properties:

()() 310 630 ,1216
2

cos ≤≤≤≤⎥⎦
⎤

⎢⎣
⎡ ++= kiki

M
Nik

π . (5)

It can easily be converted to a 32×32 matrix by the obser-
vation that it is uniform, leading to 50 % redundancy. The
first and last 16 tines in the matrix are identical with the 32
center-most lines, as shown in Fig. 4.

The reason for using a 64×32 matrix is that the modi-
fied DCT produces 64 output values, also with 50 % re-
dundancy, which will be fed to the windowing block.
When the size of the DCT matrix is reduces the 32 output
values still need to be doubled in a way shown by Fig. 5.

0 31 63

Fig. 5. Converting 32 output values from the DCT into 64 values.

Before any optimization techniques can be used, the
modified DCT mast is mapped into a standard DCT. By

RADIOENGINEERING, VOL. 13, NO. 4, DECEMBER 2004 25

plotting Nik for both transforms, identical lines and columns
can be found.

The information in the modified DCT can also be
found in the normal DCT. Row 1, 2, 3 etc in the modified
matrix can be mapped to row 31, 30, 29 etc in the normal
DCT matrix if they are negated. Row 0 in the normal DCT
matrix is all zeros and can therefore be neglected.

Next, we have to find a suitable optimization method.

One of these methods was proposed by B.G Lee in
1984 [3], decreasing the required number of multiplication
needed from 1024 down to 80 for a 32-point IDCT calcu-
lation. This leads to a speed gain approximately 13 times.
Lee's algorithm is based on the divide-an-concur pattern,
splitting large DCT into a series of smaller DCTs (Fig. 6).

x(0

x(4

x(6

x(2

x(1

x(5

x(3

x(7

x(0

x(1

x(2

x(3

x(7

x(6

x(4

x(5

1/(2)1
16C

1/(2)3
16C

1/(2)7
16C

1/(2)1
8C

1/(2)1
8C

1/(2)1
4C

1/(2)1
4C

1/(2)1
4C

1/(2)1
4C1/(2)3

4C

1/(2)3
8C

1/(2)5
16C

Fig. 6. Eight point DCT using Lee's algorithm.

A program was developed to auto-generate the source
code using Lee's algorithm for any matrix of size 2M. The
program can generate DCT transforms as well as inverse
DCT transforms. Built-in memory optimization keeps the
temporary variables needed to a minimum.

4. Experimental Results
In order to test the decoder, MPEG supplies a number

of test sequences. Most test sequences are sine sweeps with
various amplitudes. During the experiment, we use the de-
veloped assembler program of decoder for DSP ТМS
320C50, Texas Instruments DSP Starter Kit and test se-
quences according to the ISO/IEC11172-3 standard [1].

A supplied signal is sine sweep from 20 Hz to 10 kHz
with the amplitude of –20dB (full scale is normalized to the
range between –1 and +1). Two tests only verify computa-
tional accuracy of implementation, and not functionality.

The first criterion states that the maximum allowed
difference between two 16-bit waveforms is ±3 [1]. The
difference between the signals does not exceed ±2 accor-
ding to the plot.

The second criterion states that the root mean square
value may not exceed 0.00000881 [1].

In our case, we are 8192 sampling points on the wa-
veforms containing 5 errors, which give 0.00000095367.

Both criterions passed the test. The decoder produ-
cing output above is valid ISO/IEC 11172-3 MP3 decoder.

0 8000
0

8000 8000

80000
0

80000

3

2
1

0

-1

-2

-3

Fig. 7. Two waveforms produced with the reference source code and our decoder and the difference between.

⎟
⎠
⎞

⎜
⎝
⎛=

k
iC i

k πcos

26 M. GALABOV, IMPLEMENTATION OF IMDCT BLOCK OF AN MP3 DECODER THROUGH OPTIMIZATION ...

5. Conclusions
Already at the beginning of the article, critical deci-

sions concerning what algorithms of IMDCT to use had
been made. Many fast algorithms were found, but choice
was done to use the most straightforward one, due its low
complexity compared to another more sophisticated algo-
rithms. Loss of efficiency could be accepted to as quickly
as possible achieve working architecture in the first hand;
especially that loss of efficiency was not critical for the
entire design.

The result is an efficient audio decoder, capable of
streaming and decoding MP3 in real time. The software
decoder complies with the quality requirements in the
ISO/IEC 11172-3 standard.

References
[1] ISO/IEC 11172-3:1993 Information technology - Coding of moving

pictures and associated audio for digital storage media at up to about
1,5 Mbit/s 1993.

[2] GADD, S., LENART, T. A hardware accelerated mp3 decoder with
Bluetooth streaming capabilities. Master's thesis, Lund Institute of
Technology, Sweden, 2001.

[3] LEE, B.G. A new algorithm to compute the discrete cosine trans-
forms. IEEE Transactions on Acoustics, Speech and Signal Proces-
sing. 1984, vol. 32, no. 6, p. 1243–1245.

[4] BRITANAK, V., RAO, K. R. A new fast algorithm for the unified
forward and inverse mdct/mdst computation. Signal Processing.
2002, vol. 82,no. 3, p. 433–459.

[5] PAIK, W., HWANG, S. Design of a novel synthesis filter for real-
time MPEG-2 audio decoder implementation on a DSP chip. IEEE
Transaction on CE. 1999, vol. 45, no. 4, p. 1119–1129.

Acknowledgements
Research described in the paper was financially sup-

ported by the University of Veliko Turnovo.

About Authors...
Miroslav Galabov was born in Veliko Turnovo. He rece-
ived his M.S.E degree in radio television engineering from
the Higher Naval School “N. Vapcarov”,Varna, Bulgaria,
in 1989. After that he worked as design engineer for Insti-
tute of Radio Electronics, Veliko Turnovo. From 1992 to
2001 he was assistant professor at Higher Military Univer-
sity, Veliko Turnovo. He received his Ph.D. degree in au-
tomation systems for processing of information and control
from the Higher Military University, in 1999. Since 2002
he has been assistant professor in Computer Systems and
technologies department at “St. Cyril and St.Methodius”
University of Veliko Turnovo. He is the author of three
textbooks, and over 20 papers. His current interests are in
signal processing, DSP and multimedia.

RADIOENGINEERING REVIEWERS
December 2004, Volume 13, Number 4

• AHMED., B. T., Universidad Politécnica de Madrid
• BERNAS, M., Czech Technical University, Prague
• FRÝZA, T., Brno University of Technology, Brno
• FUČÍK, O., Brno University of Technology, Brno
• HALÁMEK, J., Czech Academy of Sciences, Brno
• HANUS, S., Brno University of Technology, Brno
• KLÍMA, M., Czech Technical University, Prague
• KOCUR, D., Technical University of Košice
• KOLOUCH, J., Brno University of Technology, Brno
• KOTULIAKOVÁ, J., Slovak Univ. Tech., Bratislava
• KRATOCHVÍL, T., Brno Univ. of Technology, Brno
• KVIČERA, V., TESTCOM, Praha
• LEVICKÝ, D., Technical University of Košice
• LUKÁČ, R., University of Toronto, Toronto
• MARCHEVSKÝ, S., Technical University of Košice
• MAZÁNEK, M., Czech Technical University, Prague

• MOHR, F., Univ. of Applied Sciences, Pforzheim
• NOVOTNÝ, K., Czech Technical University, Prague
• PÁTA, P., Czech Technical University, Prague
• PECHAČ, P., Czech Technical University, Prague
• POLEC, J., Slovak Univ. of Technology, Bratislava
• PROKEŠ, A., Brno University of Technology, Brno
• PROVAZNÍK, I., Brno Univ. of Technology, Brno
• ŘÍČNÝ, V., Brno University of Technology, Brno
• SCHIMMEL, J., Brno Univ. of Technology, Brno
• SMÉKAL, Z., Brno University of Technology, Brno
• SZOKE, I., Brno University of Technology, Brno
• ŠEBESTA, J., Brno University of Technology, Brno
• VARGICA, R., Slovak Univ. of Technol., Bratislava
• WIESER, V., University of Žilina, Žilina
• WILFERT, O., Brno University of Technology, Brno
• ZAVACKÝ, J., Technical University of Košice

	Introduction
	Functionality
	Huffman Decoder
	Descaling
	Reordering
	Antialias
	IMDCT
	Filter Bank

	Software Implementation�of the IMDCT Decoder Block
	Optimizations on the DCT Matrix

	Experimental Results
	Conclusions

