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Abstract. The optical transfer function (OTF), as an ob-
jective measure of the quality of optical and electro-optical 
systems, is closely related to the point spread function 
(PSF) and other derived characteristics, such as the modu-
lation transfer function (MTF) and the phase transfer func-
tion (PTF). The paper focused to the use a generalized 
OTF, which is primarily dedicated to the description of li-
near space invariant systems (LSI), for the purpose of 
sampled structures of image sensors (e.g. CCD, CMOS, 
CID), and to implement the derived results while utilizing 
the graphical user’s interface (GUI) in Matlab. The model 
used considers the effects of the detector photo sensitive 
area, sampling process, as well as other CCD specific 
parameters, such as the charge transfer efficiency (CTE) 
or diffusion in order to derive the overall MTF shape. The 
paper also includes an experimental measurement in the 
real system and a comparison with the results of modeling. 
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1. Introduction 
OTF is the main objective measure of image quality 

in optical and electro-optical systems. OTF is defined as 
the Fourier transform of PSF. OTF is a complex function 
of a real variable. Its magnitude is called modulation trans-
fer function (MTF), and the phase of OTF is called phase 
transfer function (PTF). MTF can be also defined as a ratio 
of modulation depth in the image plane to the modulation 
depth in the object plane for the test pattern of the sine sha-
pe. OTF is more suitable than PSF because the overall OTF 
is given as a product of subsystem partial OTFs (the comp-
lex convolution is needed in the spatial domain). 

Optical systems are mostly linear and space shift in-
variant (LSI) [6], but this is not generally true for all elec-
tro-optical systems and especially for image sensors 
including smart imagers. In this paper the concept of OTF 
analysis is generalized to be applicable to sampled struc-
tures of electro-optical systems. 

2. Characteristics of Optical and 
Electro-optical Systems 

2.1 Point Spread Function 
The smallest detail the imaging system can produce is 

determined by its impulse response h(x, y). The impulse 
response, in optical systems called point spread function 
(PSF), describes spatial distribution of illumination in 
image plane, when the point source in object plane is used. 
PSF is the response of imaging system to the two dimen-
sional Dirac impulse. 
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Fig. 1. Two dimensional impulse response of imaging system – 

point spread function (PSF). 

The simplified diagram of imaging system with unit mag-
nification is shown in Fig. 1. There is an ideal point source 
f(x,y) = δ(x–x’, y–y’) in the object plane and shifted impul-
se response g(x,y) = h(x–x’, y–y’) in the image plane. The 
relation between an object and image can be expressed as 

( , ) ( , ) ( , )g x y f x y h x y= ∗  , (1) 

where the object irradiance distribution f(x,y) is convolved 
with the impulse response h(x,y). Two dimensional convo-
lution process is defined by the convolution integral 

2

( , ) ( , ) ( , )

( , ) ( , )

g x y f x y h x y

f h x y d dα β α β α β

= ∗

= − −∫  . (2) 

Eqn. (2) shows that the impulse response of the ideal ima-
ging system with a perfect replica of the object is hideal(x,y) 
= δ(x, y). An ideal optical system is capable to form a point 
image of a point object, which is impossible in a real ima-
ging system, where many blurring effects occur. 

2.2 Transfer Functions 
Eqn. (1) expresses the image at the output of the LSI ima-
ging system by the convolution in the spatial domain. The 
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convolution theorem [6] simplifies this process stating that 
the convolution in the spatial domain is a simple product in 
the frequency domain. Applying the Fourier transform to 
both sides of (1), we get 

{ ( , )} { ( , ) ( , )}
( , ) ( , ) ( , )

g x y f x y h x y
G u v F u v H u v

= ∗
=

F F
 , (3) 

where F(u,v) denotes the object spectrum, G(u,v) is the 
image spectrum, H(u,v) denotes the spectrum of the impul-
se response h(x,y), and u, v are spatial frequencies. 

The normalized H(u,v) is known as the optical trans-
fer function (OTF), which is complex in general. The mag-
nitude is referred to as the modulation transfer function 
(MTF) and the phase as the phase transfer function (PSF): 

( , ){ ( , )} | ( , ) | j u vOTF h x y H u v e φ≡ =F  (4) 

| ( , ) | ( , )MTF H u v PTF u vφ≡ ≡  (5) 

In case of LSI imaging system with a sine wave input, we 
have a sine wave output. Reduced spatial resolution of the 
system causes decrease of image modulation depth (Fig. 2). 
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Fig. 2.  Modulation decreases going through the real imaging system. 

2.3 Modulation Transfer Function 
The modulation transfer function is the most impor-

tant and the most often used characteristics of the imaging 
system. Besides the definition of the MTF as the magnitude 
of the OTF, we can define MTF as the ratio of the spatial 
sine wave modulation depth in the image and object planes. 

Modulation depth M is defined as ac component mag-
nitude divided by dc component (bias level): 

max min

max min

A A aM c
A A d

−
= =

+ c
 , (6) 

where Amax and Amin are maximum and minimum values of 
the irradiance in image plane. 

In case of LSI imaging system with the sine wave in-
put, we have a sine wave output. The reduced spatial reso-
lution of the system causes the modulation depth decrease 
of the image Mi related to the modulation depth of the ob-
ject Mo. This is expressed by the modulation transfer (MT) 

i

o

MMT
M

=  . (7) 

The MTF is a spatial frequency dependence of the MT 

( , )
( , )

i

o

M u vMTF
M u v

≡  , (8) 

where u, v are spatial frequencies. MTF is usually norma-
lized to have a unity at the zero spatial frequency. 

2.4 Overall Transfer Function of Imaging 
System 
Frequency domain viewpoint analysis by means of 

MTF is convenient especially when the analyzed imaging 
system consists of several subsystems. Each subsystem has 
its own partial transfer function and the overall transfer 
function can be obtained by multiplying partial ones. 
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Fig. 3. The overall transfer function of the system consisting of 

several subsystems. 

When the imaging system consists of n independent sub-
systems (Fig. 3) with PSFs h1(x, y) ... hn(x, y), the overall 
impulse response of the system is 

1 2( , ) ( , ) ( , ) ( , )nh x y h x y h x y h x y= ∗ ∗ ∗K  , (9) 

and the overall transfer function is 

1 2( , ) ( , ) ( , ) ( , )nH u v H u v H u v H u v= ⋅ ⋅ ⋅K  . (10) 

3. Image Sensors 
and Their Characteristics 
Introductory staff presented in the above section is di-

rectly applicable for optical and electro-optical systems in 
the continuous spatial domain. The basic concept needs to 
be generalized to be usable for imaging systems with the 
sampled structures. 
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Fig. 4.  Image sensor as an integral sampler. 

3.1 Image Sensor as an Integral Sampler 
This section is aimed to describe the process of spatial 

averaging and image sampling in the structure of the ide-
alized image sensor. Based on the theory of sampling [1], 
[6], [8], the sampling model of the sampled image sensor 
(Fig. 4) can be represented by the equation 

[ ]( , ) ( , ) ( , ) s( , )sg x y f x y p x y x y= ∗ ⋅  , (11) 

where f(x, y) is an input object, p(x, y) is a finite sampling 
aperture (averaging area) of varying sensitivity distributi-
ons over the sampling aperture, s(x, y) is the sampling grid. 
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The spectrum of the sampled image Gs(u, v) is given 
by Fourier transform of (11). Recalling the convolution 
theorem, we can write 

[ ]( , ) ( , ) ( , ) ( , )sG u v F u v P u v S u v= ⋅ ∗  , (12) 

where F(u, v), P(u, v) and S(u, v) are Fourier images of the 
functions from (11). S(u, v) is a spectrum of the spatially 
restricted sampling grid. In case of the ideal sampling (spa-
tially non-restricted) and the ideal image restoration 

( , ) ( , )S u v u vδ≈  . (13) 

Eqn. (12) can be then rewritten to the form 

( , ) ( , ) ( , )rG u v F u v P u v= ⋅  , (14) 

where Gr(u, v) is a spectrum of the reconstructed image. 

Considering (14), OTF of the spatial filtering (spatial 
averaging on the detector aperture) is obviously 

( , )( , ) ( , ) { ( , )}
( , )

r
det

G u vOTF u v P u v p x y
F u v

≡ = = F  . (15) 

P(u, v) is Fourier image of sampling impulse p(x, y), and it 
is called the detector OTF [4] or the footprint OTF [1]. 

For a detector of a given shape and the uniform sensi-
tivity distribution, the function p(x, y) is defined as follows 

1 ( , )
( , )

0 ( , )
p

x y P
Ap x y

x y P

⎧ ∈⎪= ⎨
⎪ ∉⎩

 . (16) 

Ap is the detector aperture area, (x, y) ∈ P and (x, y) ∉ P 
mean the position inside and outside the detector, resp. 

 WS WS

 
Fig. 5. Wigner-Seitz cell for the rectangular and hexagonal sam-

pling grid. Sampling sites are depicted by black dots. 

In a more general case of a non-uniform sensitivity detec-
tor aperture, p(x, y) is normalized to meet the condition 

( , )

( , ) 1
x y P

p x y dxdy
∈

=∫∫  . (17) 

Considering (15), the detector MTF can be given by 

( , ) ( , )det detMTF u v OTF u v=  . (18) 

3.2 Shift Variance and Sampling MTF 
Obviously, the sampled imaging system is not inva-

riant to a space shift: position of the source object with 
respect to the sampling sites affects the final image data. 
The sampled imaging system has several different MTFs 
for one spatial frequency depending on the phase between 

the sampling grid and the object. One of possible ways of 
eliminating the space shift dependence from the MTF con-
sists in evaluating the average impulse response and the 
average MTF assuming the scene is randomly positioned 
with respect to the sampling sites [1], [8]. This MTF is cal-
led the sampling MTF or the shift invariant MTF. 

An analytic approach can be also used for the samp-
ling MTF. Similarly to the detector area p(x, y), Wigner-
Seitz (WS) function [3] (Fig. 5) can be defined for a given 
sampling grid 

1 ( , )
( , )

0 ( , )
w

x y WS
Aw x y

x y WS

⎧ ∈⎪= ⎨
⎪ ∉⎩

 , (19) 

where Aw is an area of the Wigner-Seitz cell, (x, y) ∈ WS 
and (x, y) ∉ WS and mean the position inside and outside 
the cell, respectively. 

The sampling OTF for a given sampling grid can be 
defined as Fourier image of (19) 

( , ) { ( , )} ( , )sampOTF u v w x y W u v= =F  , (20) 

which yields the sampling MTF as a magnitude of (20) 

( , ) ( , )samp sampMTF u v OTF u v=  . (21) 

4. Detector MTF 
for Some Special Cases 
Recalling above described theoretical results, we have 

analytically derived the detector MTF in the close form for 
some special detector shapes. Obtained results are pre-
sented including graphical representation of mathematical 
formulas. The development of the detector MTF and sam-
pling MTF is very similar, and therefore, only the results 
for the detector MTF are given in detail. 
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Fig. 6. Detector with the rectangularly shaped active area. Two 

dimensional MTF of the rectangular detector with the 
dimensions A = B = 40 µm. 
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4.1 Rectangularly Shaped Detector 
Rectangular or square detectors are rare, but play an 

important role in the simplest modeling of real sensors. 

According to (16), the detector function p(x, y) is 

1 | | ,| |
2 2( , )

0

A Bx y
ABp x y

elsewhere

⎧ < <⎪= ⎨
⎪⎩

 . (22) 

The detector OTF is simply obtained Fourier transform of 
the separable function p(x, y) 

1 1 1( , ) rect rect rect ,x yp x y x y
A A B B AB A B

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 , (23) 

( , ) { ( , )}
sinc( ) sinc( ) sinc( , )

detOTF u v p x y
Au Bv Au B

=
= ⋅ =

F
v

 , (24) 

where sinc(x) = sin(πx) / (πx), and 

( , ) ( , ) sinc( , )det detMTF u v OTF u v Au Bv= =  . (25) 

Eqn. (25) shows that the transfer function is broader for 
smaller detector area and vice versa. This features imaging 
systems, which image sensors consist of rectangular detec-
tors. The detector of a rectangularly shaped active area and 
2D graphical representation of MTF are shown in Fig. 6. 

4.2 L Shaped Detector 
In real sensors, shapes differing from rectangular one 

can be found. In CMOS APS sensors, L shape is used. 
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Fig. 7. Detector with the L shaped active area. Two dimensional 

MTF of the L shaped detector with the dimensions A = B 
= 40 µm, a = b = 20 µm. 

The detector function p(x, y) is 

1 ( , )
( , )

0 ( , )

x y P
p x y AB ab

x y P

⎧ ∈⎪= −⎨
⎪ ∉⎩

 (26) 

and the detector OTF is given by Fourier transform of the 
non-separable function p(x, y) 

( )

( )

( )

( ) ( 2 )

( , )
( ) sinc ,( )

( ) sinc ( ) ,

det

j ua j v B b

j u A a j v B b

OTF u v
a B b au B b v e e
AB ab
B A a A a u Bv e e
AB ab

π π

π π

− −

− − − −

=
−

= −
−
−

+ −
−

 , (27) 

( , ) ( , )det detMTF u v OTF u v=  . (28) 

An L shaped active area of the detector and a graphical re-
presentation of two dimensional MTF is shown in Fig. 7. 

4.3 Rhomb Shaped Detector 
The rhomb shaped detector exhibits several advanta-

ges over the rectangular ones. The detector function of this 
detector is defined as follows: 

2 1 1 1| | | |
2( , )

0

x y
AB A Bp x y

elsewhere

⎧ + <⎪= ⎨
⎪⎩

 , (29) 

and the detector OTF is given by Fourier transform of the 
non-separable function p(x, y) 

( , ) sinc sinc
2 2det

Bv Au Bv AuOTF u v +⎛ ⎞ ⎛= ⋅⎜ ⎟ ⎜
⎝ ⎠ ⎝

− ⎞
⎟
⎠

 (30) 

( , ) ( , )det detMTF u v OTF u v=  (31) 

The shape of the theoretically derived 2D MTF is shown in 
Fig. 8.The rhomb detector excels in better suppression of 
frequencies above Nyquist limit causing aliasing artifacts. 

x

y

( , )p x y

A

B

 

-100
-50 0

50
100

-100
-50

0
50

100
0,0
0,2
0,4
0,6
0,8
1,0

u [cy/mm]v [cy/mm]

MTF [-]

 
Fig. 8. Detector with the rhomb shaped active area. Two dimen-

sional MTF of the rhomb shaped detector with the di-
mensions A = B = 40 µm. 

4.4 Hexagonally Shaped Detector 
Image sensors using the hexagonally shaped detectors 

have several valuable properties when arranged in a hexa-
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gonal sampling grid: about 13.4 % less detectors is needed 
[2] to reconstruct the image (radial symmetry of the spec-
trum) without artifacts compared to rectangular ones. The 
hexagonal detectors are also suitable for the localization of 
point light sources. The detector function for so-called 
side-up hexagonally shaped detector is defined as 

2

2 3 1| | , | | | |
( , ) 2 2 2 23

0

D Dy x y
p x y D

elsewhere

⎧
< +⎪= ⎨

⎪
⎩

<  , (32) 

and the detector OTF is given by Fourier transform of the 
non-separable function p(x, y) 

( , )

1 sinc cos sinc
3 2 23 3 3

cos sinc
2 23 3

cos sinc sinc
2 23 3 3

detOTF u v

D D u D uu v

D u D uv v

D D u D uu v v

π

π

π

=

⎧ ⎡ ⎛ ⎞ ⎛⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪= −⎨ ⎢ ⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝⎪ ⎣⎩

⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ + − ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎦

⎫⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎪+ − ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎪⎝ ⎠ ⎝ ⎠⎭

v
⎞

+ ⎟
⎠

+  , (33) 

( , ) ( , )det detMTF u v OTF u v=  . (34) 
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Fig. 9. Detector with the hexagonally shaped active area. Two 

dimensional MTF of the hexagonally shaped detector 
with the dimension D = 40 µm. 

The detector with the hexagonally shaped active area and 
the graphical representation of 2D MTF is shown in Fig. 9. 

4.5 Octagonally Shaped Detector 
Analysis of the detector with the octagonal active area 

shape is also important because such detectors are used in 
FujiFilm SuperCCD sensors. The detector function for so-
called side-up octagonally shaped detector is defined as 

2

2 1 2 2| | ,| | , | | | |( , ) 2 2 2 2 2
0

D Dy x x yp x y D
elsewhere

⎧ +
< < + <⎪= ⎨

⎪⎩
2
D

, (35) 

and the detector OTF is given by Fourier transform of the 
non-separable function p(x, y) 

( ) ( )

( , 0)
1 sinc ( 2 1) sinc
2

1 2 21 sinc ( ) sinc 1 ( )
4 2 2

1 2 21 sinc ( ) sinc 1 ( )
4 2 2

detOTF u v

D u Dv

u D u v D u v
v

u D u v D u v
v

≠

= −

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞+ + + − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞− − − − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

, (36) 

( , 0)

1 2 2 1sinc 1 sinc sinc( )
2 2 2 2

detOTF u v

Du Du Du

=

⎛ ⎞⎛ ⎞ ⎛ ⎞
= − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 , (37) 

( , ) ( , )det detMTF u v OTF u v=  . (38) 
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Fig. 10. Detector with the octagonally shaped active area. 2D 

MTF of the octagonal shaped detector with the dimen-
sion D = 40 µm and its profile. 

The detector with the octagonally shaped active area and 
the graphic representation of 2D MTF is shown in Fig. 10. 

4.6 Circularly Shaped Detector 
The detector with circularly shaped active area is not 

directly used in image sensors (we can find it in special 
structures using fiber-optic bundle to produce an input ima-
ge for the sensor). The spatial averaging process is perfor-
med within an individual fiber. The detector function for 
the circularly shaped detector is defined as 

2 2
2

4
( , ) 2

0

Dx y
p x y D

elsewhere
π

⎧ + <⎪= ⎨
⎪⎩

 , (39) 

and the detector OTF is given by Fourier transform of the 
non-separable function p(x, y) 

( )2 2
1 2 2

2 2

2
( , ) jinc

2det

J D u v DOTF u v u v
D u v

π

π

+ ⎛ ⎞= = ⎜ ⎟
⎝ ⎠+

+  , (40) 
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where jinc(x) = 2J1(πDx) / (πDx) and J1(x) is the Bessel 
function of the first kind and order. Next, 

( )2 2
1

2 2

2
( , ) ( , )det det

J D u v
MTF u v OTF u v

D u v

π

π

+
= =

+
 . (41) 
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Fig. 11. Detector with the circularly shaped active area. 2D MTF of 

the circularly shaped detector with the diameter D = 40 µm. 

The detector with the circularly shaped active area and the 
graphic representation of the 2D MTF is shown in Fig. 11. 

5. Overall MTF of the Imaging System 
The simplified model was developed for an effective 

testing of MTF shape dependence on system parameters. 
Theoretical results were also implemented into a Matlab 
based computer program. 

The proposed model (Fig. 12) comprises a diffraction 
limited optical subsystem and an image sensor (geometrical 
properties: the shape and the size of the detector and the 
sampling grid, CCD specific properties for diffusion and 
charge transfer efficiency MTF modeling). The image re-
construction subsystem is not implemented in this model. 
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Fig. 12. Model of the imaging system with the image sensor for the 

MTF modeling purposes. 

Considering Fig. 12, OTF of the whole imaging system 
(condition of the unitary transfer function in the image 
processing subsystem OTFr(u, v) = 1) is given by 

( , ) ( , ) ( , )opt sensOTF u v OTF u v OTF u v= ⋅  , (42) 

where OTF of the CCD image sensor (including both geo-
metrical and CCD specific properties) is 

( , ) ( , ) ( , )

( , ) ( , )
sens det samp

diff cte

OTF u v OTF u v OTF u v

OTF u v OTF u v

= ⋅

⋅ ⋅
 . (43) 

OTFdet(u, v) is the detector OTF, OTFsamp(u, v) is sampling 
OTF, OTFdiff(u, v) is diffusion OTF and OTFcte(u, v) is 
OTF affected by the charge transfer efficiency in the CCD. 
Both OTFdet(u, v) and OTFsamp(u, v) are so-called geomet-
rical transfer functions in contrast to OTFdiff(u, v) and 
OTFcte(u, v), which are specific for the CCD structure. 

5.1 MTF of the Optical Subsystem 
The diffraction limited optical subsystem is conside-

red in the proposed model. Properties of such an optical 
device are described by the diffraction limited MTF. 

OTF of the diffraction limited optical subsystem [1] 
with the circularly shaped aperture given by Fourier trans-
form of Airy distribution (Fig. 13) is 
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where ur is radial and uc is cutoff spatial frequency 

( )/#1 Fuc λ=  . (45) 

λ is the wavelength of light and F/# is relative aperture. 
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Fig. 13 2D Airy distribution and corresponding MTF of the dif-

fraction limited optical system with circular aperture. 
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Fig. 14. Diffusion MTF and charge transfer efficiency MTF in the 

CCD specific subsystem model. 

5.2 CCD Specific Transfer Functions 
The proposed model provides also two CCD specific 

transfer functions: the diffusion MTF and MTF of the char-
ge transfer inefficiency; both are described in detail in [1], 
[4]. Here in Fig. 14, only the graphical representation of 
these MTFs is depicted. 

Fig. 14 shows that the diffusion MTF play a signifi-
cant role for the long wavelength only, i.e. in the near-IR 
and IR area. CTE MTF is not the very important in the 
CCD with the high transfer efficiency even with high num-
ber of transfers along a CCD register. 

6. MTF Modeling and Measurement 
The overall MTF of the imaging system with the ima-

ge sensor is given by a product of many partial MTFs. 
Each of these MTFs depends on several parameters. It is 
almost necessary to use a computer program for effective 
analysis of the system. We have implemented GUI applica-
tion called ISMOT (Image Sensor Modeling Toolbox) 
under Matlab. This application enables modeling of the fol-
lowing tasks: optical subsystem properties, detector shape 
and sampling grid, CCD sensor specific properties (diffu-
sion, CTE). All the charts were generated using ISMOT. 

Even the most sophisticated models cannot take into 
account all the effects in real imaging systems. Any case, 
we have to check the modeled characteristics by measuring 
real systems. For this purpose, we built a simple measure-

ment system with the MTF evaluation by GUI application 
called MTF EVAL under Matlab. This system uses reflec-
tive test pattern with a linear or logarithmic sweep. After 
shooting the pattern, its modulation depth is determined 
and MTF plotted. The pattern and the program were opti-
mized for the measurement of the digital camera MTF. 

 

 
Fig. 15. Image Sensor Modeling Toolbox and MTF Evaluation Tool. 

Results of the particular measurement and modeling are 
presented in Fig. 17. The difference between characteristics 
is caused by the simplified ISMOT model especially. This 
model comprises diffraction limited optical and image 
sensor subsystems only. Better model should take more 
subsystems into account (real optical systems with aber-
rations, micro-lens structures, optical anti-aliasing filters, 
color mosaic filters, more accurate geometric and physical 
models of image sensor, A/D conversions, interpolation 
algorithms, and other image processing). 
  

Digital camera

Test pattern 

Tripod 
Light 

Object distance 

 
Fig. 16. Configuration of the measuring system and the test pattern 

with logarithmic sweep. 

7. Conclusions 
The knowledge of the operation of the first part of the 

imaging system, i.e. the image sensor, is very important. 
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Many of the image processing functions can be implemen-
ted into the image sensor today. Image processing often 
requires an input signal with specific qualitative parame-
ters. In order to fulfill these parameters, the objective me-
asures e.g. MTF should have a specific shape. Mentioned 
facts raise the importance of modeling and/or measurement 
of image sensor characteristics. The main characteristics of 
the image sensors are described in this paper. 
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Fig. 17.  Results of modeling and measurement of digital camera. 

The proposed model comprises geometrical as well as 
CCD specific physical properties of the image sensor. We 
have tested different geometrical structures of an area 
image sensor. Currently, most of the detector arrays utilize 
a rectangular geometry. However, other detector shapes 
and sampling structures may offer an improved performan-
ce. Some advantages of hexagonal or rhombic structures 
were mentioned in the paper. Also L shaped detectors 
(most commonly used in CMOS APS) were analyzed. Mo-
deling results show that the particular detector MTF needs 
to be calculated for the detector active area effective de-
sign. In the image sensor design there are many conflicting 
requirements e.g. SNR and MTF that could be considered. 
For the more comprehensive MTF model, many additional 
physical parameters could be taken into account. 
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