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Abstract. This paper presents PDL or ASIC implementa-
tion of key modules of invariant object recognition system 
based on the combination of the Incremental Hough trans-
form (IHT), correlation and rapid transform (RT). The 
invariant object recognition system was represented par-
tially in C++ language for general-purpose processor on 
personal computer and partially described in VHDL code 
for implementation in PLD or ASIC. 
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1. Introduction 
The field of invariant image recognition is widely in-

creasing part of image processing area. Various complex 
techniques must be used in order to recognize translated, 
rotated and scaled input objects. The recognition system 
(Fig. 1) can be partitioned into modules such as pre-
processing (sensing, segmentation), invariant feature ex-
traction and classification. The invariant feature extraction 
of recognized image always plays a central role. Invariant 
feature extractor has a big CPU time nature, being normally 
implemented in software on general-purpose processor 
(GPP). Custom implementations in hardware allow faster 
or real-time processing [1], [2]. 

This paper proposes hardware (PLD or ASIC) imple-
mentation of key modules of invariant object recognition 
system (IHTP – Incremental Hough Transform Processor 
and CTP – Creatin Transform Processor) aiming the inte-
gration of GPP with programmable logic devices (PLD). 
The system comprises of pre-processing, invariant feature 
extraction, and classification tasks. The GPP is used when 
sequential  processing  is required  or complicated floating- 

point arithmetic is needed. The PLD is used for parallel and 
bit level operations as well as simple floating-point arith-
metic operations. This improves the performance of the 
system when compared to pure GPP solution, reduces the 
processing time and cost when compared to pure applica-
tion-specific integrated circuit (ASIC) implementation. So, 
the hardware/software system can represent a good trade-
off between performance and cost [3]. 

2. Invariant Object Recognition 
System and Its Hardware 
Implementation 
The invariant object recognition system (Fig. 1.) and 

its software realization aspects are described in [4]. In-
variant object recognition system consists of three sub-
systems: 
• Digital image pre-processing system,  
• Invariant feature extractor,  
• Classifier. 

An input image from a CCD camera is converted to a bina-
ry image using a pre-processing system. The pre-proces-
sing system includes the following operations: noise filte-
ring, digitalization, edge detection, tresholding, thinning, 
and segmentation. The feature extractor has three stages. 
The first stage implements the Incremental Hough trans-
form (IHT) to map the original image to the Hough para-
meter space. The second stage provides translation and 
scale invariant capabilities by correlation operations. The 
third stage is an implementation of translation invariant 
transform (RT) used to provide rotation invariant features. 
As classifier, a simple Euclidean distance classifier is used. 

The hardware implementation was developed in two 
versions [7] (Fig. 2). 
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Fig. 1.  The block scheme of the proposed invariant object recognition system. 
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Fig. 2.  The block scheme of invariant object recognition system: ASIC version a) and PLD version b). 

 
2.1 ASIC Concept 

A CCD camera obtains an input image. Pre-process-
ing operations such as noise filtering, digitalization, edge 
detection, tresholding and thinning are done by a speciali-
zed ASIC chipset [5]. A communication of a pre-proces-
sing unit with a PLD processor is realized by a fast com-
munication bus controlled by PLD. Parametrisable IHT 
processor maps the binary image to Hough parameter spa-
ce. The correlation unit is a standard function available in 
an Intellectual Property core (IP core) program from vari-
ous vendors [6]. Parametrisable CT processor provides 
rotation invariant features that are proposed via fast PCI 
bus to PC. Scale invariance is done in normalization unit in 
PC as well as the final classification task. The block sche-
me of ASIC version of invariant object recognition system 
can be seen in Fig. 2a. 

2.2 PLD Concept 
A CCD camera obtains an input image. Noise filtering 

and digitalization are done by a specialized ASIC chipset. 
Pre-processing operations such as edge detection, treshol-
ding and thinning are done in PLD by IP core function. 
Parametrisable IHT processor maps the binary image to 
Hough parameter space. The correlation unit is a standard 
function available in IP core program. Parametrisable CT 
processor provides rotation invariant features that are pro-
posed via fast PCI bus to PC. Scale invariance is done in 
normalization unit in PC as well as the final classification 
task. The block scheme of PLD version of invariant object 
recognition system can be seen in Fig. 2b. 

3. CT Processor 
3.1 Transforms from the Class CT 

The class of fast translation invariant transforms (CT) 
was introduced in 1977 [8]. The class CT results as an ex-
tension of the original RT [9] using instead of (a+b) and 

|a-b| operators, any pair of commutative operators f1(a,b) 
and f2(a,b). 
 

      Transform
 
Operators  

NRT NQT NNT NMT 

f1(a,b) a + b a + b max{a,b} a v b 

f2(a,b) |a – b| (a – b)2 min{a,b} a ^ b 

Tab. 1.  Transforms from the class CT. 

While the set of all commutative operators is infinite, the 
class CT may contain infinite number of transforms. Over-
view of all transform used in this paper is shown in Tab. 1. 

There are several algorithms for RT computation [10], 
[11]. The algorithms differ from each other by ordering of 
computed spectral coefficients, and by sequencing of 
operations in transform steps. B-algorithm is usually used 
in CT processors because of identical operations that are 
performed in each transform step [10]. 

x(0)

x(3)

x(2)

x(0)

(0)x x≡ (2)

x(1)

x(2)

x(3)

x(1)

1f   (a,b) 2

~

~

~

~

x x≡ ~

f   (a,b)

 
Fig. 3.  Signal graph for CT (for N=4). 

The principle of CT calculation (B-algorithm) for 1D digi-
tal signal (a vector with 4 elements) is depicted as a signal 
graph in Fig. 3. For the field of input data (numbered from 
0 to N-1) n=log2N transform steps are needed. The trans-
formed data are computed using the following formulas 
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where i=0,...,N/2-1; r is the transform step, x(r) is the data 
of r transform step [10]. 

3.2 Parametrisable CTP Design 
A CT processor (CTP) can be defined as a computa-

tional unit for performing of transforms from the class CT. 
There are many possible architectures of CTP in relations 
to an algorithm, a used degree of parallelism [10], [11]. A 
CTP can be classified by complexity, speed and resource 
cost. There are four architectures of CTP, which compute 
transforms from the class CT with the help of B-algorithm, 
described in [10]: serial-recirculate CTP, parallel-recircu-
late CTP, parallel-cascade CTP, parallel-pipelined CTP.  

In the following we give results of the development 
work related to a design of two new parametrisable CTPs 
with the possibility of changing a width of input elements 
and transform type (RT, QT, NT and MT). The CTPs were 
described in VHDL code for programmable logic devices 
and tested with help of simulation tool of a design system 
for programmable logic devices. 

3.2.1 Serial-Recirculate CTP 
Input data are shifted to a serial input register, which 

is composed of two parts RIB and RIA. When the register 
is fulfilled with the elements of the vector x(r), then there 
are the elements x(r)(N/2) and x(r)(0) at the input of a func-
tional block (FB). FB computes operations f1 and f2 accor-
ding to the coding and then sequentially computes all the 
elements from the next transform step x(r+1), which are se-
quentially shifted to the output register RO. After proces-
sing all the data from the registers RIB and RIA, i.e. after 
the register RO is fulfilled, data are shifted to RIB and RIA 
through switch RO and the whole cycle of the transform is 
repeated. After n transform steps CT spectral coefficients 
[10] are in the RO. 

3.2.2 Parallel-Recirculate CTP 
This architecture of CTP enables parallel computation 

of CT spectral coefficients so that we realize technically 
one cascade only and the output data from this cascade re-
circulate n-times [10]. 

3.2.3 Parallel-Cascade CTP 
This CTP consists of the one register field (RF) and 

according to B-algorithm connected n fields of functional 
blocks (FBF). The advantage of the using B-algorithm is 
the possible unification of all the connections of the used 
elements, because all the connections among FBF are the 
same [10]. 

3.2.4 Parallel-Pipelined CTP 
If we add one RF after each FBF to the architecture of 

1D parallel-cascade CTP we obtain architecture of 1D 
parallel-pipelined CTP. This CTP is suitable for high-speed 

computations of any transform of the class CT in cases 
where there is need of sequentially computing the trans-
form for many vectors, which may be the case of 2D trans-
forms [10]. 

3.2.5 Architecture of Parametrisable Serial 
CTP for PLD 
Architecture of the new serial CTP is similar to gene-

ral-purpose processors (PC processors). There are ALU, 
address counter unit, memory of data and control unit, im-
plemented in the architecture (Fig. 4). Each transform step 
NALU consists of 10 sub-steps. This architecture is econo-
mic from the point of view of number of used resources, 
but generally with a limited speed of computing. The archi-
tecture uses a memory block of size of 2N, because of sha-
ring of memory and using the memory partially as internal 
registers and partially as a memory. For i=0,2,4,…, n (even 
numbers) a memory region from address 0 up to N-1 serves 
as an input memory location, where S is the number of 
transform steps; n=log2(N). The memory region of N up to 
2N-1 is an output memory. For i=1, 3, 5,…,n-1 (odd num-
bers) the memory region from address N up to 2N-1 is an 
input memory location, and the location from 0 up to N-1 is 
an output memory location. 

Memory 1
N

ALU ALU

2N - 1
Memory 0

0N - 1

 
Fig. 4.  Architecture of serial CT processor. 
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Fig. 5.  Architecture of parallel CT processor. 

Memory complexity of the CTP can be generally described 
in the form 

xALUMEMio MMMWM ++= )(  (2) 

where M is the number of register resources of the proces-
sor, W is the width of input elements, MMEMio composes 
input, output registers and memory block, MALU are internal 
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registers of arithmetic-logic units (ALUs) and Mx contains 
registers for control part of the processor. Then 

xMNWM ++= )2(2 . (3) 

The total time of computation includes initialization 
steps, that are necessary for each transformation step, pre-
paring of operands and writing of results  

)( compinitper NNtT +=  (4) 

where tper is the period of the main processor clock, Ninit is 
the number of initialization steps, and Ncomp is the number 
of computational steps. Then  

)log2( 2 NNtT ALUper +=  (5) 

where NALU  is 10, because each computational step consists 
of 10 sub-steps. 

3.2.6 Architecture of Parametrisable Parallel 
CTP for PLD 
This architecture uses besides a memory with input 

elements also 2N registers and internal register of ALU. 
This approach differs from the previously design that at the 
beginning of computing all input elements are stored into 
registers. Then these elements are read concurrently be-
cause it is possible to access all of these registers at the 
same time. This feature increases the speed of computing at 
the cost of increasing of memory requirements (Fig. 5). 

Memory complexity of processor can be expressed as 

xMEMALUio MMMMWM +++= )(  (6) 

where M is the number of register resources of the proces-
sor, W is the width of input elements, Mio composes input 
and output registers, MALU are internal registers of ALUs, 
MMEM is the main memory block, and Mx contains registers 
for the control part of the processor. Then 

xALU MNNWM ++= )(2 . (7) 

The total time of computation for the parallel architecture 
depends on the number of ALUs and memory blocks 

)( compopinitper NNNtT ++=  (8) 

where tper is the period of the main processor clock, Ninit is 
the number of initialization steps, Nop is the number of 
steps for preparation (reading) of operands into registers 
from a memory, and Ncomp is the number of calculation 
steps. It follows 

)log21( 2

ALUMEM
per N

NN
N

NtT ++=  (9) 

where NALU  is 2, because each computational step consists 
of 2 sub-steps: reading of operands, writing of results; N is 
the number of input elements, NALU  is the number of 
ALUs. 

3.3 Experiments and Results 

3.3.1 CT Transforms Computed 
on General-Purpose Processor 

Implementation of CTP on a general-purpose proces-
sor (PC) is straightforward. We have used C++ compiler 
from Borland Company. Because of measuring of time 
event being possible only on frame of milliseconds, the 
program repeats computing of CT transform cyclically. We 
have changed input elements for each run to prevent a 
situation that compiler does optimization of computing. We 
have accomplished experiments on two general-purpose 
processors of different generation and frequency for better 
comparison of results. The first one is older Intel 
386/33MHz (P1), the second one is Intel Pentium 233 MHz 
(P2). P1 processor has similar working frequency as PLD, 
the comparing results can be interesting. P2 processor pre-
sents a relatively powerful general-purpose processor. 

3.3.2 CT Transforms Computed on CTP for 
PLD Implementation 
Each of the described transforms (RT, NT, QT and 

MT) can be applied to both mentioned architectures. For 
comparing of the speed and the number of logic resources 
for each of described transforms we have done experiments 
with serial CTP for N=8 to 512 and W=16. It follows from 
the results that the quickest transform is MT, then RT and 
NT have quite similar nature, only NT consumes less logic 
resources than RT. The QT is the slowest and the most 
resources demanding transform. MT transform can be 
applied only to integer number. For real numbers, we have 
used 32-bit wide IEEE single precision floating-point num-
ber standard with 24 bits of a mantissa, 8 bits of an expo-
nent and a sign. The NT real number transform is more 
accurate than transforms for integer number, which is com-
pensating also with bigger demand for logic resources [12]. 
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Fig. 6. Dependence of computing time of transform for N=32, 

W=16, P1 vs. serial CTP. 

3.3.3 Comparison of Results 
Results of experiments show that the serial CT pro-

cessor is approximately 10 times, 10 times, 5 times, 20 ti-
mes faster than P1 for RT, NT, QT and MT, respectively. 
For W=16, N=32, the computing times are 24.3µs, 19.3µs, 
35.5µs, 8.9µs for RT, NT, QT and MT, resp. (Fig. 6). 
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Results of experiments for parallel CT processors 
show approximately the same time of computing for all 
transforms with comparing to powerful general-purpose 
processor P2. For W=16, N=32 computing time is 3.9 ms, 
2.16ms, 2.17ms, 1.22m for RT, NT, QT, MT, resp. (Fig. 7). 

All timings are valid for Altera CPLD family FLEX-
10K. The tper value is PLD type dependent, because it imp-
lies particular types of PLD’s resources, PLD synthesis tool 
features as well as programming technique in VHDL [12]. 
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Fig. 7. Dependence of computing time on transform for N=32, 

W=16, P2 vs. parallel CTP. 

4. IHT Processor 
4.1 Incremental Hough Transform (IHT) 

Using the Hough transform each image point (x,y) is 
mapped to the curve expressed in the r-θ plane 

θθ sincos yxr +=  (10) 

where r is the distance from the original and θ represents 
an angle between the normal and the x-axes (Fig. 8). Both r 
and θ axes have to be quantized and hence a two-dimen-
sional accumulator array must be constructed in the r-θ 
plane [13], [14]. The equation (10) is applied to each point 
in the image and the contents of all the cells in the pa-
rameter space that the corresponding curve passes through 
are incremented. 
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Fig. 8. Relationship between (x,y) and (r,θ). 

The Hough transform method described above is known in 
literature as the Standard Hugh Transform (SHT) [13], 
[14]. Using direct implementation of SHT in PLD leads to 
slow and large multipliers and look-up table utilization. To 

solve this problem, the incremental HT (IHT2) [15], [16], 
[17] was utilized. 

Let’s assume, p is a natural number, q is a number of 
independent sub-ranges of IHT, q=2p . If q divides K with 
zero remainder, then a modification of IHT – IHTq with q 
independent sub-ranges exists. Maximal number of sub-
ranges of IHT modification is K. For every index n is IHT 
of point calculated as initial point, which leads to SHT 
calculation. 

Generally a modification of IHT can be expressed as: 
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where 0≤n<K/q, q is the number of independent sub-ranges 
of IHT, d is the index actual sub-ranges, and Nd is maximal 
index d. Initial points can be expressed as: 
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The benefits of the proposed algorithm for q=4 (IHT4) are 
increasing of parallelism of computing by factor of 2 com-
paring to IHT2 (q=2) and by factor of 4 comparing to SHT. 

4.2 Parametrisable IHTP Design 
Hardware implementation of the core of IHT4 proces-

sor can be seen in architecture in Fig. 9. In the first trans-
form step the initial values for each section of K are calcu-
lated (12). Then the actual values with help of the previous 
values are calculated in each transform step. If the value of 
ε is carefully selected as 1/2m, multiplication from (11) can 
be realized with help of shift registers only. This simplifi-
cation leads to effective and fast realization of IHT proces-
sor, which can be for IHT4 expressed as: 
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IHT processor (IHT2 and IHT4) are parametrisable, 
i.e. it is possible to modify a format of representation of the 
float-point number, width of a mantissa or an exponent of a 
processed numbers as well as an image dimension. 

4.3 IHTP Implementation 
A comparison of difference between SHT and IHT2, 

respectively SHT and IHT4 can be seen in Fig. 10, using 
the parameters: 
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With the help of modification of number format it is 
possible to design an IHT processor with a sufficient accu-
racy and with a lower usage of system resources. The rest 
of unused resources – logic units, flip-flop memory blocks 
can be utilized for another part of the developed invariant 
object recognition system. 

A modification of number representation format af-
fects the computing time as well. It follows from the ex-
perimental results that for the custom format “m9e8” the 
computing time is only 40% of the computing time for the 
standard IEEE format with single precision, i.e. “m23e8”. 

where fSHT(n), fIHT2(n) and fIHT4(n)are the values computed 
with SHT, IHT2, IHT4, respectively at the index n. P1, 
resp. P2 is addition of difference of SHT and IHT2, SHT 
and IHT4, respectively for K=100. 

It follows from Fig. 10 and experimental results that 
the accuracy of IHT4 is 50% better than IHT2 for the same 
start conditions. 5. Conclusion 

We have presented the implementation of key 
modules (CTP and IHTP) of the invariant object recogni-
tion system based on the combination of the incremental 
Hough transform, correlation and rapid transform. The 
system was represented partially in C++ language for GPP 
for PC and partially in VHDL code for implementation in 
PLD or in ASIC. We are now performing additional ex-
periments for further examination of the system capability. 
In future we will focus also on a possibility of finding op-
timal approaches for hardware implementation of the pro-
posed system. 

It follows from the experimental results that the total 
time of computing on general-purpose processor (Intel 
Pentium 300 MHz) for IHT2 and IHT4 is 25% from the 
computing time of SHT for K=100. The computing time of 
IHT2 and INT4 is the same because of architecture of 
general-purpose processor with the only one ALU. 

With the help of floating-point representation of real 
numbers it is possible to decrease the used system re-
sources. Besides of standard IEEE type of floating-point 
representation (float and double) it is possible to apply also 
a custom type of real number representation. An exponent 
defines the scale of number representation and a mantissa 
defines an accuracy of number representation. Acknowledgements 

The authors are thanking for the financial support 
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It follows from the experimental results that it is pos-
sible to decrease system resources for IHT2 and IHT4 
algorithm by 50% by decreasing of width of exponent and 
mantissa of number representation. 
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