
RADIOENGINEERING, VOL. 13, NO. 4, DECEMBER 2004 65

Implementation of CT and IHT Processors
for Invariant Object Recognition System

Ján TURÁN1, Ľuboš OVSENÍK1, Martin BENČA1, Ján TURÁN, Jr.2

1 Dept. of Electronics and Multimedia Telecommun., Univ. of Technology, Park Komenského 3, 04021 Košice, Slovakia
2 3D People, GmbH, Keiser Passage D-72766, Reutlingen, Germany

jan.turan@tuke.sk, lubos.ovsenik@tuke.sk

Abstract. This paper presents PDL or ASIC implementa-
tion of key modules of invariant object recognition system
based on the combination of the Incremental Hough trans-
form (IHT), correlation and rapid transform (RT). The
invariant object recognition system was represented par-
tially in C++ language for general-purpose processor on
personal computer and partially described in VHDL code
for implementation in PLD or ASIC.

Keywords
Invariant object recognition, feature extraction,
Hough and Rapid transform, PLD and ASIC imple-
mentation.

1. Introduction
The field of invariant image recognition is widely in-

creasing part of image processing area. Various complex
techniques must be used in order to recognize translated,
rotated and scaled input objects. The recognition system
(Fig. 1) can be partitioned into modules such as pre-
processing (sensing, segmentation), invariant feature ex-
traction and classification. The invariant feature extraction
of recognized image always plays a central role. Invariant
feature extractor has a big CPU time nature, being normally
implemented in software on general-purpose processor
(GPP). Custom implementations in hardware allow faster
or real-time processing [1], [2].

This paper proposes hardware (PLD or ASIC) imple-
mentation of key modules of invariant object recognition
system (IHTP – Incremental Hough Transform Processor
and CTP – Creatin Transform Processor) aiming the inte-
gration of GPP with programmable logic devices (PLD).
The system comprises of pre-processing, invariant feature
extraction, and classification tasks. The GPP is used when
sequential processing is required or complicated floating-

point arithmetic is needed. The PLD is used for parallel and
bit level operations as well as simple floating-point arith-
metic operations. This improves the performance of the
system when compared to pure GPP solution, reduces the
processing time and cost when compared to pure applica-
tion-specific integrated circuit (ASIC) implementation. So,
the hardware/software system can represent a good trade-
off between performance and cost [3].

2. Invariant Object Recognition
System and Its Hardware
Implementation
The invariant object recognition system (Fig. 1.) and

its software realization aspects are described in [4]. In-
variant object recognition system consists of three sub-
systems:
• Digital image pre-processing system,
• Invariant feature extractor,
• Classifier.

An input image from a CCD camera is converted to a bina-
ry image using a pre-processing system. The pre-proces-
sing system includes the following operations: noise filte-
ring, digitalization, edge detection, tresholding, thinning,
and segmentation. The feature extractor has three stages.
The first stage implements the Incremental Hough trans-
form (IHT) to map the original image to the Hough para-
meter space. The second stage provides translation and
scale invariant capabilities by correlation operations. The
third stage is an implementation of translation invariant
transform (RT) used to provide rotation invariant features.
As classifier, a simple Euclidean distance classifier is used.

The hardware implementation was developed in two
versions [7] (Fig. 2).

Input
image

Binary image

Pre-
processor

IHT
processor Correlation RT

processor

Invariant feature extractor Classifier

Invariant features

Object
class

Digital image
pre-processor

CCD
camera

Fig. 1. The block scheme of the proposed invariant object recognition system.

66 J.TURÁN, Ľ.OVSENÍK, M. BENČA, J. TURÁN JR., IMPLEMENTATION OF CT AND IHT PROCESSORS …

Input
object

CCD
camera

ASIC

Digitali-
zation

+
Filtering

Tres-

Fast communication bus

PLD Processor

CTP

Corela-
tion

IP
IHT4P

PC

Normali-
zation

+
Classif.

Object
class

a)

holding

PCI bus

Input
object

CCD
camera

ASIC

Digitali-
zation

+
Filtering

Tres-

Fast communication bus

PLD Processor

CTP

Corela-
tion

IP
IHT4P

PC

Normali-
zation

+
Classif.

Object
class

b)

holding

PCI bus
Fig. 2. The block scheme of invariant object recognition system: ASIC version a) and PLD version b).

2.1 ASIC Concept

A CCD camera obtains an input image. Pre-process-
ing operations such as noise filtering, digitalization, edge
detection, tresholding and thinning are done by a speciali-
zed ASIC chipset [5]. A communication of a pre-proces-
sing unit with a PLD processor is realized by a fast com-
munication bus controlled by PLD. Parametrisable IHT
processor maps the binary image to Hough parameter spa-
ce. The correlation unit is a standard function available in
an Intellectual Property core (IP core) program from vari-
ous vendors [6]. Parametrisable CT processor provides
rotation invariant features that are proposed via fast PCI
bus to PC. Scale invariance is done in normalization unit in
PC as well as the final classification task. The block sche-
me of ASIC version of invariant object recognition system
can be seen in Fig. 2a.

2.2 PLD Concept
A CCD camera obtains an input image. Noise filtering

and digitalization are done by a specialized ASIC chipset.
Pre-processing operations such as edge detection, treshol-
ding and thinning are done in PLD by IP core function.
Parametrisable IHT processor maps the binary image to
Hough parameter space. The correlation unit is a standard
function available in IP core program. Parametrisable CT
processor provides rotation invariant features that are pro-
posed via fast PCI bus to PC. Scale invariance is done in
normalization unit in PC as well as the final classification
task. The block scheme of PLD version of invariant object
recognition system can be seen in Fig. 2b.

3. CT Processor
3.1 Transforms from the Class CT

The class of fast translation invariant transforms (CT)
was introduced in 1977 [8]. The class CT results as an ex-
tension of the original RT [9] using instead of (a+b) and

|a-b| operators, any pair of commutative operators f1(a,b)
and f2(a,b).

 Transform

Operators

NRT NQT NNT NMT

f1(a,b) a + b a + b max{a,b} a v b

f2(a,b) |a – b| (a – b)2 min{a,b} a ^ b

Tab. 1. Transforms from the class CT.

While the set of all commutative operators is infinite, the
class CT may contain infinite number of transforms. Over-
view of all transform used in this paper is shown in Tab. 1.

There are several algorithms for RT computation [10],
[11]. The algorithms differ from each other by ordering of
computed spectral coefficients, and by sequencing of
operations in transform steps. B-algorithm is usually used
in CT processors because of identical operations that are
performed in each transform step [10].

x(0)

x(3)

x(2)

x(0)

(0)x x≡ (2)

x(1)

x(2)

x(3)

x(1)

1f (a,b) 2

~

~

~

~

x x≡ ~

f (a,b)

Fig. 3. Signal graph for CT (for N=4).

The principle of CT calculation (B-algorithm) for 1D digi-
tal signal (a vector with 4 elements) is depicted as a signal
graph in Fig. 3. For the field of input data (numbered from
0 to N-1) n=log2N transform steps are needed. The trans-
formed data are computed using the following formulas

()
())2/(),()12(

)2/(),()2(
)1()1(

2
)(

)1()1(
1

)(

Nixixfix

Nixixfix
rrr

rrr

+=+

+=
−−

−−
 (1)

RADIOENGINEERING, VOL. 13, NO. 4, DECEMBER 2004 67

where i=0,...,N/2-1; r is the transform step, x(r) is the data
of r transform step [10].

3.2 Parametrisable CTP Design
A CT processor (CTP) can be defined as a computa-

tional unit for performing of transforms from the class CT.
There are many possible architectures of CTP in relations
to an algorithm, a used degree of parallelism [10], [11]. A
CTP can be classified by complexity, speed and resource
cost. There are four architectures of CTP, which compute
transforms from the class CT with the help of B-algorithm,
described in [10]: serial-recirculate CTP, parallel-recircu-
late CTP, parallel-cascade CTP, parallel-pipelined CTP.

In the following we give results of the development
work related to a design of two new parametrisable CTPs
with the possibility of changing a width of input elements
and transform type (RT, QT, NT and MT). The CTPs were
described in VHDL code for programmable logic devices
and tested with help of simulation tool of a design system
for programmable logic devices.

3.2.1 Serial-Recirculate CTP
Input data are shifted to a serial input register, which

is composed of two parts RIB and RIA. When the register
is fulfilled with the elements of the vector x(r), then there
are the elements x(r)(N/2) and x(r)(0) at the input of a func-
tional block (FB). FB computes operations f1 and f2 accor-
ding to the coding and then sequentially computes all the
elements from the next transform step x(r+1), which are se-
quentially shifted to the output register RO. After proces-
sing all the data from the registers RIB and RIA, i.e. after
the register RO is fulfilled, data are shifted to RIB and RIA
through switch RO and the whole cycle of the transform is
repeated. After n transform steps CT spectral coefficients
[10] are in the RO.

3.2.2 Parallel-Recirculate CTP
This architecture of CTP enables parallel computation

of CT spectral coefficients so that we realize technically
one cascade only and the output data from this cascade re-
circulate n-times [10].

3.2.3 Parallel-Cascade CTP
This CTP consists of the one register field (RF) and

according to B-algorithm connected n fields of functional
blocks (FBF). The advantage of the using B-algorithm is
the possible unification of all the connections of the used
elements, because all the connections among FBF are the
same [10].

3.2.4 Parallel-Pipelined CTP
If we add one RF after each FBF to the architecture of

1D parallel-cascade CTP we obtain architecture of 1D
parallel-pipelined CTP. This CTP is suitable for high-speed

computations of any transform of the class CT in cases
where there is need of sequentially computing the trans-
form for many vectors, which may be the case of 2D trans-
forms [10].

3.2.5 Architecture of Parametrisable Serial
CTP for PLD
Architecture of the new serial CTP is similar to gene-

ral-purpose processors (PC processors). There are ALU,
address counter unit, memory of data and control unit, im-
plemented in the architecture (Fig. 4). Each transform step
NALU consists of 10 sub-steps. This architecture is econo-
mic from the point of view of number of used resources,
but generally with a limited speed of computing. The archi-
tecture uses a memory block of size of 2N, because of sha-
ring of memory and using the memory partially as internal
registers and partially as a memory. For i=0,2,4,…, n (even
numbers) a memory region from address 0 up to N-1 serves
as an input memory location, where S is the number of
transform steps; n=log2(N). The memory region of N up to
2N-1 is an output memory. For i=1, 3, 5,…,n-1 (odd num-
bers) the memory region from address N up to 2N-1 is an
input memory location, and the location from 0 up to N-1 is
an output memory location.

Memory 1
N

ALU ALU

2N - 1
Memory 0

0N - 1

Fig. 4. Architecture of serial CT processor.

M
E
M
O
R
Y

Input registers
n-1 0

ALU
1

ALU
2

ALU
n-1

ALU
n

Output registers
n-1

0

n-1
Fig. 5. Architecture of parallel CT processor.

Memory complexity of the CTP can be generally described
in the form

xALUMEMio MMMWM ++=)((2)

where M is the number of register resources of the proces-
sor, W is the width of input elements, MMEMio composes
input, output registers and memory block, MALU are internal

68 J.TURÁN, Ľ.OVSENÍK, M. BENČA, J. TURÁN JR., IMPLEMENTATION OF CT AND IHT PROCESSORS …

registers of arithmetic-logic units (ALUs) and Mx contains
registers for control part of the processor. Then

xMNWM ++=)2(2 . (3)

The total time of computation includes initialization
steps, that are necessary for each transformation step, pre-
paring of operands and writing of results

)(compinitper NNtT += (4)

where tper is the period of the main processor clock, Ninit is
the number of initialization steps, and Ncomp is the number
of computational steps. Then

)log2(2 NNtT ALUper += (5)

where NALU is 10, because each computational step consists
of 10 sub-steps.

3.2.6 Architecture of Parametrisable Parallel
CTP for PLD
This architecture uses besides a memory with input

elements also 2N registers and internal register of ALU.
This approach differs from the previously design that at the
beginning of computing all input elements are stored into
registers. Then these elements are read concurrently be-
cause it is possible to access all of these registers at the
same time. This feature increases the speed of computing at
the cost of increasing of memory requirements (Fig. 5).

Memory complexity of processor can be expressed as

xMEMALUio MMMMWM +++=)((6)

where M is the number of register resources of the proces-
sor, W is the width of input elements, Mio composes input
and output registers, MALU are internal registers of ALUs,
MMEM is the main memory block, and Mx contains registers
for the control part of the processor. Then

xALU MNNWM ++=)(2 . (7)

The total time of computation for the parallel architecture
depends on the number of ALUs and memory blocks

)(compopinitper NNNtT ++= (8)

where tper is the period of the main processor clock, Ninit is
the number of initialization steps, Nop is the number of
steps for preparation (reading) of operands into registers
from a memory, and Ncomp is the number of calculation
steps. It follows

)log21(2

ALUMEM
per N

NN
N

NtT ++= (9)

where NALU is 2, because each computational step consists
of 2 sub-steps: reading of operands, writing of results; N is
the number of input elements, NALU is the number of
ALUs.

3.3 Experiments and Results

3.3.1 CT Transforms Computed
on General-Purpose Processor

Implementation of CTP on a general-purpose proces-
sor (PC) is straightforward. We have used C++ compiler
from Borland Company. Because of measuring of time
event being possible only on frame of milliseconds, the
program repeats computing of CT transform cyclically. We
have changed input elements for each run to prevent a
situation that compiler does optimization of computing. We
have accomplished experiments on two general-purpose
processors of different generation and frequency for better
comparison of results. The first one is older Intel
386/33MHz (P1), the second one is Intel Pentium 233 MHz
(P2). P1 processor has similar working frequency as PLD,
the comparing results can be interesting. P2 processor pre-
sents a relatively powerful general-purpose processor.

3.3.2 CT Transforms Computed on CTP for
PLD Implementation
Each of the described transforms (RT, NT, QT and

MT) can be applied to both mentioned architectures. For
comparing of the speed and the number of logic resources
for each of described transforms we have done experiments
with serial CTP for N=8 to 512 and W=16. It follows from
the results that the quickest transform is MT, then RT and
NT have quite similar nature, only NT consumes less logic
resources than RT. The QT is the slowest and the most
resources demanding transform. MT transform can be
applied only to integer number. For real numbers, we have
used 32-bit wide IEEE single precision floating-point num-
ber standard with 24 bits of a mantissa, 8 bits of an expo-
nent and a sign. The NT real number transform is more
accurate than transforms for integer number, which is com-
pensating also with bigger demand for logic resources [12].

[s]

0,0

50,0

100,0

150,0

200,0

RT NT QT MT

t
µ P1

CT serial

Fig. 6. Dependence of computing time of transform for N=32,

W=16, P1 vs. serial CTP.

3.3.3 Comparison of Results
Results of experiments show that the serial CT pro-

cessor is approximately 10 times, 10 times, 5 times, 20 ti-
mes faster than P1 for RT, NT, QT and MT, respectively.
For W=16, N=32, the computing times are 24.3µs, 19.3µs,
35.5µs, 8.9µs for RT, NT, QT and MT, resp. (Fig. 6).

RADIOENGINEERING, VOL. 13, NO. 4, DECEMBER 2004 69

Results of experiments for parallel CT processors
show approximately the same time of computing for all
transforms with comparing to powerful general-purpose
processor P2. For W=16, N=32 computing time is 3.9 ms,
2.16ms, 2.17ms, 1.22m for RT, NT, QT, MT, resp. (Fig. 7).

All timings are valid for Altera CPLD family FLEX-
10K. The tper value is PLD type dependent, because it imp-
lies particular types of PLD’s resources, PLD synthesis tool
features as well as programming technique in VHDL [12].

0,0

0,5

1,0

1,5

2,0

2,5

RT NT QT MT

[s]
P2
CT parallel

t
µ

Fig. 7. Dependence of computing time on transform for N=32,

W=16, P2 vs. parallel CTP.

4. IHT Processor
4.1 Incremental Hough Transform (IHT)

Using the Hough transform each image point (x,y) is
mapped to the curve expressed in the r-θ plane

θθ sincos yxr += (10)

where r is the distance from the original and θ represents
an angle between the normal and the x-axes (Fig. 8). Both r
and θ axes have to be quantized and hence a two-dimen-
sional accumulator array must be constructed in the r-θ
plane [13], [14]. The equation (10) is applied to each point
in the image and the contents of all the cells in the pa-
rameter space that the corresponding curve passes through
are incremented.

(),j jx y

,i jq
0 x

y

(),i ix y

,i jr

Fig. 8. Relationship between (x,y) and (r,θ).

The Hough transform method described above is known in
literature as the Standard Hugh Transform (SHT) [13],
[14]. Using direct implementation of SHT in PLD leads to
slow and large multipliers and look-up table utilization. To

solve this problem, the incremental HT (IHT2) [15], [16],
[17] was utilized.

Let’s assume, p is a natural number, q is a number of
independent sub-ranges of IHT, q=2p . If q divides K with
zero remainder, then a modification of IHT – IHTq with q
independent sub-ranges exists. Maximal number of sub-
ranges of IHT modification is K. For every index n is IHT
of point calculated as initial point, which leads to SHT
calculation.

Generally a modification of IHT can be expressed as:

nNd
q
Knd

q
Knd

q
K

nNd
q
Knd

q
Knd

q
K

d

d

rrr

rrr

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−=

+=

2
1

,
2

1

ε

ε

 (11)

for
2
Kd

q
K

< , respectively
2
Kd

q
K

≥

where 0≤n<K/q, q is the number of independent sub-ranges
of IHT, d is the index actual sub-ranges, and Nd is maximal
index d. Initial points can be expressed as:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

d
q

yd
q

xr

yrxr

d
q
K

q
KNd

ππ sincos

;
2

0

 (12)

The benefits of the proposed algorithm for q=4 (IHT4) are
increasing of parallelism of computing by factor of 2 com-
paring to IHT2 (q=2) and by factor of 4 comparing to SHT.

4.2 Parametrisable IHTP Design
Hardware implementation of the core of IHT4 proces-

sor can be seen in architecture in Fig. 9. In the first trans-
form step the initial values for each section of K are calcu-
lated (12). Then the actual values with help of the previous
values are calculated in each transform step. If the value of
ε is carefully selected as 1/2m, multiplication from (11) can
be realized with help of shift registers only. This simplifi-
cation leads to effective and fast realization of IHT proces-
sor, which can be for IHT4 expressed as:

()
(
()
()mMUXrotMUXg

mMUXrotMUXg
mMUXrotMUXg
mMUXrotMUXg

,Re
,Re

,Re
,Re

133

022

311

200

+=
+=
+=)
+=

 (13)

IHT processor (IHT2 and IHT4) are parametrisable,
i.e. it is possible to modify a format of representation of the
float-point number, width of a mantissa or an exponent of a
processed numbers as well as an image dimension.

4.3 IHTP Implementation
A comparison of difference between SHT and IHT2,

respectively SHT and IHT4 can be seen in Fig. 10, using
the parameters:

70 J.TURÁN, Ľ.OVSENÍK, M. BENČA, J. TURÁN JR., IMPLEMENTATION OF CT AND IHT PROCESSORS …

03,0
)()(

07,0
)()(

4

2

2

1

=
−

=

=
−

=

∑

∑

n

nfnf
P

n

nfnf
P

n
IHTSHT

n
IHTSHT

 (14)

With the help of modification of number format it is
possible to design an IHT processor with a sufficient accu-
racy and with a lower usage of system resources. The rest
of unused resources – logic units, flip-flop memory blocks
can be utilized for another part of the developed invariant
object recognition system.

A modification of number representation format af-
fects the computing time as well. It follows from the ex-
perimental results that for the custom format “m9e8” the
computing time is only 40% of the computing time for the
standard IEEE format with single precision, i.e. “m23e8”.

where fSHT(n), fIHT2(n) and fIHT4(n)are the values computed
with SHT, IHT2, IHT4, respectively at the index n. P1,
resp. P2 is addition of difference of SHT and IHT2, SHT
and IHT4, respectively for K=100.

It follows from Fig. 10 and experimental results that
the accuracy of IHT4 is 50% better than IHT2 for the same
start conditions. 5. Conclusion

We have presented the implementation of key
modules (CTP and IHTP) of the invariant object recogni-
tion system based on the combination of the incremental
Hough transform, correlation and rapid transform. The
system was represented partially in C++ language for GPP
for PC and partially in VHDL code for implementation in
PLD or in ASIC. We are now performing additional ex-
periments for further examination of the system capability.
In future we will focus also on a possibility of finding op-
timal approaches for hardware implementation of the pro-
posed system.

It follows from the experimental results that the total
time of computing on general-purpose processor (Intel
Pentium 300 MHz) for IHT2 and IHT4 is 25% from the
computing time of SHT for K=100. The computing time of
IHT2 and INT4 is the same because of architecture of
general-purpose processor with the only one ALU.

With the help of floating-point representation of real
numbers it is possible to decrease the used system re-
sources. Besides of standard IEEE type of floating-point
representation (float and double) it is possible to apply also
a custom type of real number representation. An exponent
defines the scale of number representation and a mantissa
defines an accuracy of number representation. Acknowledgements

The authors are thanking for the financial support
from the COST 276 and COST 292 grant and VEGA grant
No. 1/0381/03.

It follows from the experimental results that it is pos-
sible to decrease system resources for IHT2 and IHT4
algorithm by 50% by decreasing of width of exponent and
mantissa of number representation.

References The inaccuracy of real number representation is in-
creased by decreasing of width of a mantissa and an expo-
nent. From the experimental results it follows that, i.e. for
IHT2 processor at number format “m10e8” consumes only
53% of resources used at IEEE number format “m23e8”.
The maximal difference of computed value is 1,6% in this
case. For IHT4 at “m9e8” number format the processor
consumes only 50% of resources used at IEEE format. The
maximal difference is 1,6%.

[1] DAVIES, E. R. Machine Vision: Theory, Algorithms, Practicabili-
ties. London: Academic Press, 1990.

[2] UMBAUGH, S. E. Computer Vision and Image Processing: A
Practical Approach Using CVIP-tools. Prentice Hall, 1998.

[3] STAMOULIS, I., FORD, N., DUNNET, G. J., WHITE, M., LIS-
TER, P. F. WHDL Methodologies for Effective Implementation on
FPGA Devices and Subsequent Transition to ASIC Technology.
Centre for VLSUI and Computer Graphic, Brighton, 1998.

< 0, K/4>

MUX1

<K/4,K/2>

MUX2

<K/2,3K/4>

MUX3

<3K/4,K>

Step 0

Step 0

Step 0

Step 0

Shift

Shift

Shift

Shift

+

+

-

-

REG 0

REG 1

REG 2

REG 3

r-axis
quanti-
zation
and
Hough
accumu-
lator
updating

Fig. 9. Architecture of IHT4 processor.

RADIOENGINEERING, VOL. 13, NO. 4, DECEMBER 2004 71

0,00

0,05

0,10

0,15

0,20

0 45 90 135

Difference of |SHT(100)-IHT2(100)|

θ , n

a)

90

b)
difference

Difference of |SHT(100)-IHT4(100)|

0,00

0,05

0,10

0,15

0,20

0 45

difference

135 θ , n

Fig. 10. Comparison of difference of SHT and IHT2 a), resp. SHT and IHT4 b) for K=100.

[4] TURÁN, J., FAZEKAS, K., FARKAŠ, P., ŠIŠKOVIČOVÁ, D.
Invariant Feature Extraction Based on the Hough Transform.In Proc.
IWSSIP 2001(invited paper), Bucharest, 2001, pp. 39-42.

[5] MOINI, A. Vision Chips. Kluwer Academic Publishers, 2000.
[6] FANNING, J. Literature Survey of Present State of FPGA’s. Depart-

ment of Instrumentation and Analytical Science, UMIST, Manches-
ter, 1999.

[7] TURÁN, J., BENČA, M., FARKAŠ, P. Hardware Implementation of
Key Modules of Invariant Object Recognition System Based on
Hough and Rapid Transform. In Proc. ICCVG 2002, Zakopane (Po-
land), 2002, pp. 764-770.

[8] WAGH, M. D., KANETKAR, S. V. A Class of Translation Invariant
Transform. IEEE Trans, vol. ASSP-25, no. 3, 1977, pp. 203-205.

[9] REIBOECK, H., BRODY, T. P. A Transformation with Invariance
Under Cyclic Permutation for Application in Pattern Recognition.
Inf. and Control, vol. 15, 1969, pp. 130-154.

[10] TURÁN, J. Fast Translation Invariant Transforms and their
Applications. Košice: Elfa, 1999.

[11] LOHWEG, V. Ein Beitrag zur effektiven Implementierung adaptiver
Spektraltransformationen in applikations-spezifische integrierte
Schaltkreise. Dissertationsschrift, TU Chemnitz, Germany, 2003.

[12] Altera Digital Library 2001, version 2, version 3.
[13] HOUGH, P. V. C. Method and Means for Recognizing Complex

Pattern. U.S. Patent 3069654, 1962.
[14] DUDA, R. O., HART, P. E. Use of the Hough Transformation to

Detect Lines and Curves in Pictures. Comm. of ACM, vol. 15, no. 1,
1972.

[15] KOSHIMIZU, H., NUMADA, M. FIHT2 Algorithm: a fast incre-
mental Hough Transform. IEICE Trans., 74 (10), October 1991, pp.
7-14.

[16] TAGZOUT, S., ACHOUR, K., DJEKOUNE, O. Hough Transform
Algorithm for FPGA Implementation. Signal Processing, 84 (2001),
pp. 1295-1301.

[17] BESSALAH, H., ALIN, F., SEDDIKI, S. Implementation of the
Hough Transform by the On-line Mode. In Proc. VIProm Com 2002,
Zadar (Croatia), 2002, pp. 167-171.

About Authors...
Ján TURÁN (Prof., Ing., RNDr., DrSc.) was born in Šahy,
Slovakia. He received Ing. (MSc.) degree in physical
engineering with honours from the CTU Prague, Czech
Republic, in 1974, and RNDr. (MSc.) degree in
experimental physics with honours from the UK Prague,
Czech Republic, in 1980. He received a CSc. (PhD.) and
DrSc. degrees in radioelectronics from the TU Košice, in
1983, and 1992, respectively. Since March 1979, he has
been at the TU Košice as Professor for electronics and
information technology. His research interests include
digital signal processing and fiber optics, communication
and sensing.

Ľuboš OVSENÍK (Ing., PhD.) was born in Považská
Bystrica, Slovakia. He received his Ing. (MSc.) degree in
1990 from the TU Košice. He received a PhD. degree in
electronics from the TU Košice, Slovakia, in 2002. Since
February 1997, he has been at the TU Košice as Assistant
professor for electronics and information technology. His
general research interests include optoelectronic, digital
signal processing, photonics, fiber optic communications.

Martin BENČA (Ing., PhD.) was born in Prešov,
Slovakia. He studied computer science and informatics at
the TU Košice. His research interests include multimedia
signal processing and programmable logic devices.

Ján TURÁN, Jr. (Ing.) was born in Košice, Slovakia. He
studied computer science and informatics at the TU Košice.
His research interests include multimedia signal processing
and programmable logic devices.

	Introduction
	Invariant Object Recognition�System and Its Hardware�Impleme
	ASIC Concept
	PLD Concept

	CT Processor
	Transforms from the Class CT
	Parametrisable CTP Design
	Serial-Recirculate CTP
	Parallel-Recirculate CTP
	Parallel-Cascade CTP
	Parallel-Pipelined CTP
	Architecture of Parametrisable Serial CTP for PLD
	Architecture of Parametrisable Parallel CTP for PLD

	Experiments and Results
	3.3.1 CT Transforms Computed�on General-Purpose Processor
	CT Transforms Computed on CTP for PLD Implementation
	3.3.3 Comparison of Results

	IHT Processor
	Incremental Hough Transform (IHT)
	Parametrisable IHTP Design
	IHTP Implementation

	Conclusion

