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Abstract. Standard tools for CAD have limited modes of
the sensitivity analysis: PSPICE only contains a static mode
and SPECTRE includes frequency-domain and static modes.
However, many RF systems use symmetrical structures for
enhancing the circuit properties. For such systems, the static
sensitivities are zero on principle and hence the time-domain
sensitivity analysis should be used. In the paper, a novel re-
current formula for the time-domain sensitivity analysis is
derived which uses by-products of an efficient implicit in-
tegration algorithm. As the selected integration algorithm
is more flexible than the Gear’s one that is ordinarily used,
the sensitivity analysis is more efficient in comparison with
the standard CAD tools. An implementation of the method
is demonstrated using the analysis of a low-voltage four-
quadrant RF multiplier. Nonstandard temperature sensitivity
analyses are also tested in the static and dynamic modes.
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1. Introduction

The circuit equations can only be defined in an implicit
form in most cases. Therefore, a robust and effective algo-
rithm for the implicit integration of a system of algebraic-
differential equations must be used. Hence, main features of
such algorithm are described at first. Thereafter, a novel for-
mula is derived for the time-domain sensitivity analysis that
cooperates with this integration algorithm in a natural way.

2. Definition of the Algorithms

The system of nonlinear algebraic-differential equa-
tions of a circuit is generally defined in the implicit form

f
[
x(t), ẋ(t), t

]
= 0. (1)

Let us assume now that the firstn steps of a numerical
integration of (1) have finished. Let us markx(tn) by xn

and define backward scaled differences by the formulae

δ(0)xn = xn,

δ(k)xn = δ(k−1)xn − α(k−1)
n δ(k−1)xn−1,

k = 1, . . . , kn + 2 (2)

(a concept of the backward scaled differences with a detailed
stability investigation can be found in [1], e.g.), wherekn is
the order of the polynomial interpolation used in the last in-
tegration step, and theα(...)

n multipliers are also determined
using the recurrent scheme:

α(0)
n = 1,

α(k)
n = α(k−1)

n

tn − tn−k

tn−1 − tn−1−k
, k = 1, . . . , kn + 1. (3)

Thepredictorof the variables for the next chosen time
(i.e., for tn+1) marked byx(0)

n+1 is determined by the poly-
nomial extrapolation using the backward scaled differences
(2):

x
(0)
n+1 =

kn+1∑
k=0

α
(k)
n+1 δ(k)xn (4)

((4) is a more sophisticated form of the Newton interpolation
polynomial—see the proof of Theorem 1 in the Appendix).

The corrector of the variablesxn+1 := x
(jmaxn)
n+1 for

tn+1 is determined by the modified Newton iterations[(
∂f

∂x

)(j)

n+1

+ γn+1

(
∂f

∂ẋ

)(j)

n+1

]
∆x

(j)
n+1 = −f

(j)
n+1,

j = 0, . . . , jmaxn , (5)

i.e., by repeated solving the linear system (5) with applying
theγn+1 factor approximated by (see Theorem 2 in the Ap-
pendix)

γn+1 =
kn+1∑
k=1

1
tn+1 − tn+1−k

, (6)

which gives the standard formulaγn+1 = 1/(tn+1 − tn) =
1/∆tn+1 if the first-order (i.e., Euler’s) method is used.
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After resolving the linear system (5), the vectorsx
(...)
n+1

andẋ
(...)
n+1 are updated in the standard way:

x
(j+1)
n+1 = x

(j)
n+1 + ∆x

(j)
n+1,

ẋ
(j+1)
n+1 = ẋ

(j)
n+1 + γn+1∆x

(j)
n+1,

(7)

which completes thej + 1 iteration of then + 1 time step.
However, if an indication of divergence is detected during
the iterations, then the logarithmic damping [2] is applied to
each componenti∆x

(j)
n+1 of the vector∆x

(j)
n+1

i∆x
(j)
n+1 := sgn

(
i∆x

(j)
n+1

) ∣∣ix(j)
n+1

∣∣ ln

(
1 +

∣∣i∆x
(j)
n+1

∣∣∣∣ix(j)
n+1

∣∣
)

,

i = 1, . . . ,m (8)

before the execution of (7) (m is the dimension ofx andẋ).

Operating-point analysis is performed using the static
variant of (1)

f (x0,0, t0) = f0 (x0) = 0, (9)

which is solved by the static variants of (5) and (7):(
∂f0

∂x0

)(j)

∆x
(j)
0 = −f

(j)
0 , x

(j+1)
0 = x

(j)
0 + ∆x

(j)
0 ,

j = 0, . . . , jmax0
. (10)

However, the convergence in the operating-point analysis is
often more problematic than that in the transient analysis. (In
the transient analysis, the results of the previous step serve as
a good estimation for the following step.) To avoid possible
divergence, a novel control mechanism has been developed
[3] for handling the differences∆x

(j)
0 during each iteration:

if j = 0 then

x̃ := x
(0)
0 ,

∆x̃ := ∆x
(0)
0 ,

f̃ := f
(0)
0 ,

iteration is accepted,

else

if
1
m

m∑
i=1

∣∣if (j)
0

∣∣
|if̃ |+ ifnull

< 1 then

x̃ := x
(j)
0 ,

∆x̃ := ∆x
(j)
0 ,

f̃ := f
(j)
0 ,

iteration is accepted,

else

∆x̃ :=
∆x̃

2
,

x
(j)
0 := x̃,

∆x
(j)
0 := ∆x̃,

iteration is rejected,

(11)

which checks the residual value off
(j)
0 after each iteration.

The basic idea of handling the differences∆x
(j)
0 in accord

with (11) relates to the fundamental property of the Newton-
Raphson method. If the average value of the residues does
not decrease then the difference is halved and the iteration
is repeated. The halving continues until the average resid-
ual value has decreased. It is sure that the occurrence of the
decreased average residue will be found and therefore the al-
gorithm does not even contain a check for a possible infinite
loop (!). As a result, only such∆x

(j)
0 is used for updating

the vectorx(j)
0 that ensures the decrease of the average value

of the residues.

Note that the parametersifnull prevent possible division
by zero and̃x, ∆x̃, andf̃ are auxiliary vectors.

Using the Newton-Raphson method (10) with the con-
trolling procedure (11) leads to a very reliable convergence.
However, the number of iterations could be very large in that
case and therefore the logarithmic damping (8) should not be
applied if its use is not necessary for another reason.

2.1 A Novel Recurrent Formula for the Time-
Domain Sensitivity Analysis

With respect to the notation used above, a system of the
parametric algebraic-differential equations of a circuit can be
symbolically written in the form

f
[
x(t, p), ẋ(t, p), t, p

]
= 0, (12)

wherep is one of the circuit parameters on which the sen-
sitivities are requested. Differentiating (12) with respect to
p and using the abbreviationsx′(t, p) ≡ ∂x(t, p)/∂p and
ẋ′(t, p) ≡ ∂ẋ(t, p)/∂p, we obtain

∂f

∂x
x′(t, p) +

∂f

∂ẋ
ẋ′(t, p) +

∂f

∂p
= 0. (13)

After a derivation with using the backward scaled differences
(2, 3) and corrector (5, 6) (see the proof of Theorem 3 in the
Appendix), we obtain the novel recurrent formula[(

∂f

∂x

)
n+1

+ γn+1

(
∂f

∂ẋ

)
n+1

]
x′

n+1 =

−
(

∂f

∂p

)
n+1

+
(

∂f

∂ẋ

)
n+1

×

kn+1∑
l=1

α
(l−1)
n+1 δ(l−1)x′

n

kn+1∑
k=l

1
tn+1 − tn+1−k

, (14)

which has the same Jacobian as that in (5) (for eachp)—
therefore, the laborious LU factorization of that matrix must
be executed onlyonce(of course) for eachtn+1, n = 0, . . . .

The part of (14) which is enclosed by the box enables
more accurate and efficient computing the sensitivities in
comparison with other interpolation formulae defined in [4].
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Fig. 1. Low-voltage low-power CMOS RF four-quadrant multiplier with symmetrical low-frequency (input signal) and high-frequency
(local oscillator) sources.

2.2 Operating-Point Sensitivity Analysis

For determining initial parametric derivativex′(∆t, p)
by the recurrent formula (14) (note that the implicit integra-
tion algorithm must always start with the first-order method),
the static parametric derivativex′(0, p) = x′

0(p) mustbe
computed in advance. This vector can be obtained by differ-
entiating a parametric version of (9)

f0

[
x0(p), p

]
= 0, (15)

which gives the simpler system of linear equations than (14)

∂f0

∂x0

[
x0(p), p

]
x′

0(p) = −∂f0

∂p

[
x0(p), p

]
. (16)

3. Checking the Implementation

3.1 Four-Quadrant CMOS RF Multiplier

Let us consider a four-quadrant CMOS RF multiplier
in Fig. 1 [5], which has been checked using the sensitivity
analysis described in Section 2. Note that a medium-wave

version of the circuit has been realized at our department,
and we plan to perform the IM3 measurement. The output
voltage of the multiplier is highly dependent on the control-
ling one applied to the gates ofm6 andm7 transistors.

A comparison of the output signals corresponding to
the two controlling voltages is shown in Fig. 2. For the con-
trolling voltages1 and1.5 V, the magnitudes of the output
signal are about20 and50 mV, respectively.

The output voltage of the multiplier is also very depen-
dent on the zero-bias threshold voltagesVT0 ([6], [7]) of the
transistors. The sensitivities of the output voltage on these
important model parameters, i.e., the functions

∂VOutput

∂VT0,MN1
(t),

∂VOutput

∂VT0,MN2
(t), and

∂VOutput

∂VT0,MP
(t)

are shown in Fig. 3. As we can observe, the sensitivity on
the threshold voltageVT0,MP is the most significant. Let
us emphasize that the utilized software tool [2] uses another
definition for the zero-bias threshold voltage than PSPICE—
the original values for the standard PSPICE type model were
0.62 and−0.58 V [5] (in the modified model [2], the thresh-
old voltage is positive for both N and P channel enhancement
mode transistors—this is the same convention as that in the
PSPICE JFET modeling [8]).
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Fig. 2. Dependence of the output voltage of the multiplier on
the controlling voltage.

The results in Fig. 3 can simply be checked. The zero-
bias threshold voltages of theMNx andMP transistors were
0.47 and0.44 V, respectively. We can execute another ana-
lysis with somewhat changedVT0,MP parameter and esti-
mate the sensitivity numerically. For example, let us use a
modified valueV ′

T0,MP = 0.4 V. At 17 ns (where the sen-
sitivity of VOutput on VT0,MP has the maximum0.0379411
as seen in Fig. 3), the values of the output voltageVOutput

andV ′
Output (computed using the valuesVT0,MP = 0.44 V

andV ′
T0,MP = 0.4 V) were0.0139211 V and0.0118593 V,

respectively. Now let us compare these results: the pre-
dicted value obtained using the sensitivity isV ′′

Output =
0.0139211 − 0.04 × 0.0379411 = 0.0124035 V, the ac-
tual output obtained using the valueV ′

T0,MP is V ′
Output =

0.0118593 V, so the error of the prediction is about4.59 %.
At 20 ns, the values ofVOutput, ∂VOutput/∂VT0,MP, and
V ′

Output were0.00152467 V, 0.00303789, and0.00138769
V, respectively. Comparing again, the predicted value ob-
tained using the sensitivity isV ′′

Output = 0.00152467 −
0.04 × 0.00303789 = 0.00140315 V, the actual voltage
obtained using the modified valueV ′

T0,MP is V ′
Output =

0.00138769 V, so the error of the prediction is about1.11 %
now—of course, the error is lesser for the smaller magnitude
of the output signal.

If we only want to compute the sensitivities on the
zero-bias threshold voltages, the above experiments using
the modified valuesV ′

T0 are possible. However, the semiem-
pirical, BSIM [9], and EKV MOSFET models have many
parameters and therefore it is impossible to check the cir-
cuit using small differences of the model parameters if we
want to checkall the sensitivities. For complex testing a
circuit with respect to all its parameters, the sensitivity ana-
lysis seems to be the only effective way. Emphasize that the
symmetrical circuit in Fig. 1 haszerostatic sensitivities (on
principle). Hence, the PSPICE sensitivity analysis does not
offer any usable results here.
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Fig. 3. Sensitivities of the output voltage of the multiplier on
the zero-bias threshold voltages of the transistors.

3.2 Operating-Point and Time-Domain
Temperature Sensitivity Analyses

Consider a power operational amplifier in Fig. 4 for
which both operating-point and time-domain temperature
sensitivity analyses will be tested. The amplifier has input
transistors symmetrically connected as the standard differ-
ential pair. Therefore, a sensitivity of the output voltage on
local warming up∆T1 of Q1 is to be complementary to a
sensitivity of the output voltage on local warming up∆T2

of Q2. The values of these nonstandard sensitivities will be
monitored as an appropriate and unconventional test of the
algorithm.

3.2.1Operating-Point Sensitivity Analysis

The operating-point sensitivities (i.e., the initial static
ones) obtained by solving the static modification of (14) (i.e.,
by (16)) are precisely zero-symmetrical as expected

∂VOutput

∂(∆T1)
= +0.0019251 V/K,

∂VOutput

∂(∆T2)
= −0.0019297 V/K.

(17)

In other words, if the two transistors have the same warm-
ing up (which is natural) by 10 K, e.g., the output voltage
changes approximately by−46 µV—the precise symmetry
is very important because the output voltage is only about
1.3 mV when the amplifier works at its operating point.

3.2.2Time-Domain Sensitivity Analysis

The results of solving the recurrent system (14) for
the first period of transient with the starting vector (17) are
shown in Fig. 5. The best symmetry occurred (as also ex-
pected) when the input and output voltages are close to zero
values. For other voltages, however, the symmetry is not ac-
curate but sufficient which the analysis clearly validates.
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Fig. 4. Power operational amplifier used for testing the operating-point and time-domain temperature sensitivity analyses, respectively.

4. Conclusion

A novel recurrent procedure for the time-domain sen-
sitivity analysis has been proposed that efficiently uses the
computational by-products of implicit integration algorithm.
As the selected integration algorithm uses the backward
scaled differences based on flexible Newton interpolation
polynomial, the sensitivity analysis is more efficient than
similar ones based on other interpolation schemes. The
implementation has successfully been checked analyzing
the sophisticated low-voltage low-power CMOS RF multi-
plier. The correctness of programming the formulae has been
checked by means of the classical finite difference analysis
assuming that the novel way gives more accurate results on
principle. The implementation has also been checked from
the physical point of view using the nonstandard temperature
sensitivity analysis in both static and dynamic domains.
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Appendix

Theorem 1 The formula(4) can be regarded as a trans-
formed Newton interpolation polynomial.

Proof: A member of the interpolation polynomial

xn+1 = xn + (tn+1 − tn) xn,n−1+
(tn+1 − tn) (tn+1 − tn−1) xn,n−1,n−2 + · · ·+
(tn+1 − tn) · · ·

(
tn+1 − tn+1−kn+1

)
xn,...,n−kn+1

(18a)

with the backward scaled differences defined as

xn,n−1 =
xn − xn−1

tn − tn−1
,

. . .

xn,...,n−kn+1 =
xn,...,n+1−kn+1 − xn−1,...,n−kn+1

tn − tn−kn+1

(18b)
can sequentially be transformed in the following way:

(tn+1 − tn) · · · (tn+1 − tn+1−k) xn,...,n−k =
(tn+1 − tn) · · · (tn+1 − tn+1−k)

tn − tn−k
(xn,...,n+1−k −

xn−1,...,n−k) =
(tn+1 − tn) · · · (tn+1 − tn+1−k)

(tn − tn−k) (tn − tn+1−k)
×[

xn,...,n+2−k − xn−1,...,n+1−k − (tn − tn+1−k)×

xn−1,...,n−k

]
= · · · = (tn+1 − tn) · · · (tn+1 − tn+1−k)

(tn − tn−k) · · · (tn − tn−1)
×
[
xn − xn−1 − (tn − tn−1) xn−1,n−2 −

(tn − tn−1) (tn − tn−2)xn−1,n−2,n−3 − · · ·−
(tn − tn−1) · · · (tn − tn+1−k)xn−1,...,n−k

]
=

α
(k)
n+1

[
xn − xn−1 −

tn − tn−1

tn−1 − tn−2
(xn−1 − xn−2)−

α(2)
n︷ ︸︸ ︷

(tn − tn−1) (tn − tn−2)
(tn−1 − tn−3) (tn−1 − tn−2)

×
δ(1)xn−1︷ ︸︸ ︷

xn−1 − xn−2 −

α
(1)
n−1︷ ︸︸ ︷

(tn−1 − tn−2)
(tn−2 − tn−3)

δ(1)xn−2︷ ︸︸ ︷
(xn−2 − xn−3)︸ ︷︷ ︸

δ(2)xn−1

−

· · ·
]

= α
(k)
n+1

(
xn − xn−1 − α(1)

n δ(1)xn−1 − · · ·−

α(k−1)
n δ(k−1)xn−1

)
= α

(k)
n+1δ

(k)xn. (19)

Therefore, the Newton interpolation polynomial (18) can be
reordered to a more convenient form (4). �

Theorem 2 The formula(6) can be regarded as a conse-
quence of “borderline” using the formula(4).

Proof: The vectorx(j)
n+2 is to be expressed as a polyno-

mial created by (4) and (3):

ẋ
(j)
n+1 =

lim
tn+2→tn+1

x
(j)
n+2 − xn+1

tn+2 − tn+1
=

lim
tn+2→tn+1

(
1

tn+1 − tn
δ(1)x

(j)
n+1+

1
tn+1 − tn

tn+2 − tn
tn+1 − tn−1

δ(2)x
(j)
n+1 + · · ·+

1
tn+1 − tn

· · ·
tn+2 − tn+2−kn+1

tn+1 − tn+1−kn+1

δ(kn+1)x
(j)
n+1

)
=

kn+1∑
k=1

1
tn+1 − tn+1−k

δ(k)x
(j)
n+1, (20)

and the last formula in (20) gives theγn+1 factor in (5)
directly—this process is often called “algebraization”.�

Theorem 3 The derivatives of the sensitivitiesx′
n+1 with

respect totn+1 can be expressed by the formula

ẋ′
n+1 = γn+1x

′
n+1−

kn+1∑
l=1

α
(l−1)
n+1 δ(l−1)x′

n

kn+1∑
k=l

1
tn+1 − tn+1−k

. (21)

Proof: For the substitution oḟx′
n+1, we can use the

main interpolation system (see the last formula in (20) again)

ẋ′
n+1 =

kn+1∑
k=1

1
tn+1 − tn+1−k

δ(k)x′
n+1. (22)

Using (2) gives the backward difference ofkth order as

δ(k)x′
n+1 = δ(k−1)x′

n+1 − α
(k−1)
n+1 δ(k−1)x′

n (23)

—the 2nd term in the right side of (23) contains known sen-
sitivities at tn. Therefore, only the first term must be un-
rolled and such decreasing the order can continue until the
sensitivity vectors attn+1 andtn are reached, i.e.,

δ(k−1)x′
n+1 = δ(k−2)x′

n+1 − α
(k−2)
n+1 δ(k−2)x′

n,

· · · (24)

δ(1)x′
n+1 = δ(0)x′

n+1︸ ︷︷ ︸
x′

n+1

− α
(0)
n+1 δ(0)x′

n︸ ︷︷ ︸
x′

n

.

The equations (23) and (24) give the general formula

δ(k)x′
n+1 = x′

n+1 −
k−1∑
l=0

α
(l)
n+1 δ(l)x′

n, (25)
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which is an analogy of the last part of (19). Now we can
evaluate the terms in the right side of (22) by means of (25).
For the first term (k = 1, i.e.,l = 0 in (25)), we obtain

1
tn+1 − tn

x′
n+1 −

1
tn+1 − tn

α
(0)
n+1 δ(0)x′

n. (26)

For the second term (k = 2, i.e.,l = 0 or 1), we obtain

1
tn+1 − tn−1

x′
n+1 −

1
tn+1 − tn−1

×(
α

(0)
n+1 δ(0)x′

n + α
(1)
n+1 δ(1)x′

n

)
, (27)

for the third term (k = 3, i.e.,l = 0, 1, or 2), we obtain

1
tn+1 − tn−2

x′
n+1 −

1
tn+1 − tn−2

×(
α

(0)
n+1 δ(0)x′

n + α
(1)
n+1 δ(1)x′

n + α
(2)
n+1 δ(2)x′

n

)
, (28)

and, for the last term (k = kn+1, i.e., l = 0, . . . , kn+1 − 1),
we obtain

1
tn+1 − tn+1−kn+1

x′
n+1 −

1
tn+1 − tn+1−kn+1

×(
α

(0)
n+1 δ(0)x′

n + · · ·+ α
(kn+1−1)
n+1 δ(kn+1−1)x′

n

)
. (29)

The grouping of the related terms in (26) to (29) gives the
compact form ofẋ′

n+1 (i.e., “a sensitivity algebraization”):

ẋ′
n+1 = x′

n+1

kn+1∑
k=1

1
tn+1 − tn+1−k

− α
(0)
n+1δ

(0)x′
n

kn+1∑
k=1

1
tn+1 − tn+1−k

− α
(1)
n+1δ

(1)x′
n

kn+1∑
k=2

1
tn+1 − tn+1−k

− · · ·

− α
(kn+1−1)
n+1 δ(kn+1−1)x′

n
1

tn+1 − tn+1−kn+1︸ ︷︷ ︸∑kn+1
k=kn+1

1
tn+1−tn+1−k

,

which is an unrolled form of (21)—all the above formulae
are more flexible than possible ones that can be derived on
the basis of Gear’s method [10]. �

A comparison with the first-order method Several clas-
sical CAD tools have used the simplest first-order formula[(

∂f

∂x

)
n+1

+
1

∆tn+1

(
∂f

∂ẋ

)
n+1

]
x′

n+1 =

−
(

∂f

∂p

)
n+1

+
1

∆tn+1

(
∂f

∂ẋ

)
n+1

x′
n (30)

instead of (14). Comparing the efficiencies of (30) and (14)
by means of the C.I.A. program [2], we obtain the CPU times
(on Pentium IV/2.6 GHz/Windows 98 SE) in Tab. 1 for
the sensitivity analyses of the circuit in Fig. 1—they clearly
show the usefulness of the novel formula.

Relative interpolation error 10−6 10−7 10−8

CPU time Formula (30) 49 64 65
(s) Formula (14) 34 38 38

Tab. 1. Comparison of the efficiency of the classical formula
with the novel one.
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