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Abstract. This paper provides general and deep investiga-
tion of adaptation strategies based on the channel inversion
policy regarding wide variety of channel models. Our novel
approach to the eigenmode space MIMO channel inversion
policy relies on the eigenmode space reduction providing
zero transmission outage probability regardless of the in-
stantaneous channel fading realization. Very detailed sur-
vey of the features of channel capacity is provided in ana-
lytical closed form expressions supported by many partic-
ular numerical results (Alamouti scheme is included). The
correlated MIMO channel is involved into our treatment as
well. We also address the trade-off between the capacity and
transmission outage probability. The novel results are devel-
oped in the general framework with exhaustive summary of
well known SISO and SIMO results.
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1. Introduction

There is extremely strong demand for wireless systems
enabling higher transmission rate, robustness against detri-
mental fading effects, flexibility and reliability with reason-
able costs. The adaptive algorithms employed in different
parts of the communication chain seem to be the answer to
such challenge.

1.1 Recent Results—Literature Navigation
There are plenty of papers concerning on the adaptive

algorithms of various kinds where information-theoretical
insights in conjunction with practical applications are ad-
dressed. Let us mention some key papers to help the reader
interested in adaptive modulations to guide through the huge

amount of results.

Since any adaptation rule strongly depends on the chan-
nel model which is admitted into the consideration, be re-
ferred to the landmark paper [1] to very comprehensive
information-theoretical investigation of the fading channels.
Also some adaptation rules and corresponding capacities are
developed there, including the inversion policy of both, trun-
cated and total versions. In [2], there is discussed the ca-
pacity of the channel when CSI1 is perfectly known at the
transmitter and in [3], similar results are obtained in a lit-
tle different way. Both these papers are still strongly recom-
mended to read, however the special emphasis is given on the
optimal waterfilling strategy there. Very deep and exhaus-
tive investigation of optimal power control in fading channel
with delay-limited observation is given in [4]. The relations
derived mainly in the aforementioned literature are then ap-
plied to the Rayleigh and Nakagami distribution of the chan-
nel fading e.g. in [5, 6, 7]. We will recall some selected
results obtained therein also in our tutorial part of this paper.
Very comprehensive investigation of adaptive systems to-
gether with the diversity techniques (MRC—Maximum Ra-
tio Combining, SC—Selection Combining) at the receiver
side with different distributions of channel fading can be
found in [8]. Very good and general approach to the adaptive
modulation design is shown in [9], where also some points
related to the channel inversion are implicitly mentioned.
Moreover, the cases of average BER versus instantaneous
BER constraint and discrete versus continuous rate adapta-
tion are compared there so the more reasonable approach
than the pure information-theoretical one is revealed. The
special case of adaptive modulation using variable MQAM
constellation based on the properly chosen BER approxima-
tion is developed in [10]. This paper is well written and easy
for understanding so it could serve to the reader as the first
touch to the real adaptation modulation design. Moreover, in
[11], there are discussed some points to the channel fading
estimation and prediction methods. All these approaches are
developed assuming perfect CSI. In [12], there are provided
some interesting numerical results taking into account the
error of channel estimation, clipping and co-channel inter-
ference with some proposals to reduce such effects. Impact

1Channel State Information
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of imperfect CSI prediction on adaptive modulation design
is widely investigated in [13] and other useful literature con-
cerning the realistic propagation scenario is e.g. [14, 15].
Finally, in [16, 17], there are discussed the efficiency and
applicability of the channel inversion technique in multiuser
scenario.

These were some key papers from our perspective. We
have tried to mention the papers related to the channel inver-
sion policy but also those with a bit wider scope involving
adaptive transmission algorithms in general. In the tutorial
part of the paper, we will refer to selected results obtained
recently in these papers and also discussed in very detailed
context in [18].

Next, the novel contributions are revealed in the sec-
ond part of our paper. The significant original extensions re-
garding MIMO eigenmode space channel inversion, outage
versus capacity trade-off [19], closed form for MIMO trun-
cated channel inversion, reduced eigenmode total channel
inversion, (see also [20, 21]), and the influence of channel
correlation in MIMO to the features of eigenmode channel
inversion are also covered.

1.2 Service Applications Regarding the Chan-
nel Models
Anyway, the theoretical investigations should be driven

by real motivation. In information theory, we always dream
of the optimal scheme. But the optimal solutions with re-
gard to some single point of view have usually some weak-
nesses as well, which might cause serious problems from the
overall system perspective. In real service or application re-
quirements, there are very often more competing objective
demands. In such a case, very valuable scheme is the one,
fulfilling more distinctive goals with reasonable performance
in all points. We know the optimal (capacity achieving) strat-
egy, so called waterfilling allocation (regardless the number
of dimensions over which the allocation is performed). But
such strategy suffers from many bad features such as the
non-zero transmission outage probability, non-constant re-
ceived power based on the channel realization etc.

In this paper we are going to develop the theory of
channel inversion adaptation. That perfectly corresponds to
such higher level service which calls for constant achiev-
able rate for arbitrary instantaneous channel fading. Such
feature is assured by the inversion symbol energy allocation
procedure performed at the transmitter side. One can argue
whether such goal is feasible and easily implementable and
whether the capacity loss might be still acceptable. We will
show that for some particular channels there is no way how
to ensure the non-zero transmission outage probability under
the total channel inversion policy. To reduce the problem we
can follow the truncation approach. But still, for acceptable
transmission outage probability the capacity is very low.
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Fig. 1. System model and coding approach.

We will show other ways how to obtain totally invert-
ible channels (sub-channels) providing very promising ca-
pacity value and warranted zero transmission outage proba-
bility.

The whole development of our approach supposes the
long term average symbol energy limit. This is the cru-
cial prerequisite which means the energy can be allocated
in each block independently and differently as long as the
average of transmitted energy meets the total limit. So the
maximum achievable rates we investigate are so called long
term (average) or ergodic capacities. The transmission out-
age probability is given by the portion of the time we do
not transmit any energy/information. The transmission is in-
terrupted whenever our optimization procedure resolves the
signal would be corrupted by so deep fades that there is more
beneficial to save energy for better channel occurrence (trun-
cation strategy).

Please do not confuse with delay-limited channel
model. The investigation of delay-limited condition (finite
transmitted frame) yields very different capacity versus out-
age meaning with distinctive information-theoretical origin.
We are not interested in the CDF2 of the channel capacity,
i.e. so called outage capacity (capacity versus outage, ε-
capacity) for finite frame observation window. Such quantity
specifies what the probability that given frame (finite num-
ber of channel realizations) supports required constant rate
is.

In Fig. 1, there is depicted our system model illustrat-
ing the coding idea and symbol energy allocation goal. The
channel model is flat and block-fading. We assume instan-
taneous capacity development in time regarding channel re-
alizations. In our approach, there is strictly used the single
code (the length of codewords is sufficient to be comparable3

to the additive noise ergodic interval only) and the informa-
tion is not jointly encoded via very long codewords spanning
more block-fading realizations. The symbol energy evalua-
tion relies on perfect CSI.

2Cumulative Distribution Function
3Theoretically infinitely long.
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1.3 Particular Contents of the Paper
The starting point of the paper is the comprehensive

summary of the physical and stochastic description of inves-
tigated channel models. We review both the channel statis-
tics for SISO4, SIMO5 with SC (Selection Combining) and
MRC (Maximum Ratio Combining), and also the Alamouti
scheme [22] with NT = NR = 2 for its special importance.
We are going to discuss the achievable rates for both trun-
cated and total channel inversion. The closed formulas of
some capacities are also recalled. In the case of MIMO we
provide novel closed form expression for capacity of trun-
cated channel inversion parametrized by the cut-off value
λT . The following items clarifies what the tutorial and novel
areas of this paper are:

Tutorial Part

• SISO channel models—Nakagami, Rayleigh,

• SIMO channel models—MRC, SC,

• MIMO channel model, IID & Correlated Rayleigh,

• basic idea of truncated & total inversion,

Novel Part

• total & truncated channel eigenmode space inversion,

• full- & reduced space joint PDF,

• marginal PDFs of ordered/unordered reduced eigen-
mode space,

• total inversion of eigenmode subspace,

• subspace marginal PDFs for correlated MIMO chan-
nel,

• correlated channel & inversion options,

• closed form expression for truncated full eigenmode
space channel inversion,

• trade-off between transmission outage probability and
ergodic capacity,

• Alamouti scheme under channel inversion—closed
form capacity term.

2. SISO Channel Models

We start with SISO channel models. Naturally many
adaptive (not only channel inversion) rules were developed

exclusively for scalar channels. As we will show later, some-
times the extension to the MIMO channel is straightforward
and sometimes with some very hard objections.

2.1 Nakagami Channel Model
First, the Nakagami distribution is introduced, mostly

for its very general form including some a bit more spe-
cific and very often used distributions. The absolute value of
the scalar channel gain value α in Nakagami channel model
parametrized by the value of m ≥ 1/2 corresponds to the
probability density function

p(α) = 2
(

m
Ω

)

α2m−1

Γ(m) e(−mα2/Ω), α ≥ 0. (1)

In this term, it holds Ω = E[α2]. Symbol Γ(.) denotes
the Gamma function. To regard the power conditions in the
channel we define the instantaneous received signal to noise
ratio (SNR) when no symbol energy allocation is performed
just as the scaled square of the channel gain γ = Ēα2/σ2.
The symbol Ē is the maximum long term average symbol
energy limit. The variance of the AWGN6 is σ2. Then γ be-
comes very useful quantity because it includes both, the in-
fluence for the power channel gain α2 and the maximum en-
ergy available at the transmitter over the noise variance. The
system investigation for different SNR conditions is then
very straightforward. For γ, we can immediately write so
called Gamma distribution

p(γ) =
(

m
γ

)m
γm−1

Γ(m) e(−mγ/γ̄), γ ≥ 0 (2)

where γ̄ = E[γ] is the average received signal to noise ratio
where no power/energy adaption is applied. For the special
case m = 1/2, (1) proceeds to the one-side Gaussian distri-
bution (“worst case channel distribution”).

2.2 Rayleigh Channel Model
Substituting m = 1 into (1) we arrive at so called

Rayleigh distribution which is physically originated by rich
scattering in the channel without the Line of Sight [23]. It is
given by

p(α) = 2 α
Ωe(−α2/Ω), α ≥ 0. (3)

Thus, the instantaneous received SNR γ is then distributed
exponentially

p(γ) = 1
γ e(−γ/γ̄), γ ≥ 0. (4)

4Single Input Single Output
5Single Input Multiple Outputs
6Additive White Gaussian Noise
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unordered/ordered subspace for total inversion

the weakest subchannel excluded from transmission
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Fig. 2. SVD, reduced space of eigenmodes.

3. SIMO Channel Models–Combining
at the Receiver
When the communication system chain is equipped by

single transmitting and multiple (NR) receiving antennas,
we cope with the SIMO channel. We introduce exclusively
two main processing techniques employed in the receiver
which has special importance for the simplicity of imple-
mentation and reasonable performance.

3.1 Maximum Ratio Combining
Maximum Ratio Combining (MRC) processing relies

on coherent processing in each branch of the receiver (sig-
nal from each receiving antenna). This method can be seen
as the optimal combining at the receiver side since it pro-
vides the sufficient statistics to perform ML detection but
with lower dimension. When MRC is employed and the av-
erage received SNR in each branch is the same (i.e. γk =
γ, k = 1, ..., NR), than it holds for the total received SNR
distribution

pmrc(γ) = γNR−1e
−γ
γ

(M−1)!γNR
, γ ≥ 0. (5)

3.2 Selection Combining
Instead of performing MRC, we can consider much

simpler but suboptimal strategy called selection combining.
From NT independently received and potentially indepen-
dently faded replicas of transmitted signal it is chosen the
one, which outperforms the others in some parameter of in-
terest. Naturally, the received SNR is the most reasonable
one. In SC, some information is not used in the detection
of the transmitted signal so the worse performance is ex-
pected. Under the same assumptions we have made in the
above mentioned case, PDF of γ is

psc(γ) = NR

γ

(

1 − e−
γ
γ

)NR−1

e−
γ
γ , γ ≥ 0. (6)

Using the Binomial expansion, we could rewrite (6) into the
equivalent form

psc(γ) =
M

γ

M−1
∑

k=0

(−1)k

(

M − 1

k

)

e(−
(1+k)γ

γ ). (7)

Mutually different power gains in paths are discussed in [24].

4. MIMO Channel Model

Assuming NT antennas at the transmitter and NR at the
receiver the flat fading channel corresponds to the model

y = Hx + w. (8)

The channel matrix H is of the dimension NR × NT . The
noise vector has covariance matrix Rw = σ2I. The SVD
(Singular Value Decomposition) of the channel matrix yields
y = UDVHx + w, [25]. The eigenmode space is of the
dimension Ne = min(NT , NR). Similarly we use the nota-
tion Nn = max(NR, NT ). Matrices U ∈ CNR×NR , V ∈
CNT ×NT are both unitary and the matrix D ∈ RNR×NT is
non-negative and diagonal with entries given as non-negative
square roots of eigenvalues of Wishart matrix

W =

{

HH
H , NR < NT

HHH, NR ≥ NT
. (9)

The ordered eigenvalues are denoted explicitly with index as
λi and it holds λ1 > λ2 > ... > λNe . When unordered full
space of eigenmodes is assumed, the symbol λ is used to de-
note the general eigenmode gain with the common marginal
distribution. Accordingly, λ̃ will denote the general sub-
channel gain of unordered subspace of eigenmodes. New
equivalent variables are ỹ = UHy, x̃ = VHx, w̃ = UHw

and equivalent input-output equation is ỹ = Dx̃ + w̃.
The symbol energy adaptation (or power adaptation) is per-
formed at the level of vector x̃. In Fig. 2, there is clarified
what the full space of eigenmodes (sub-channels) is and how
the unitary transformations are applied. The reduced eigen-
mode space is also mentioned and we address details later in
the paper.

4.1 IID Rayleigh MIMO Channel
The distributions (both, marginal and joint) for un-

ordered case are denoted as pu(.) and for ordered case as
po(.). In order to derive the ergodic capacity of the MIMO
channel in the Rayleigh fading with known CSI at the trans-
mitter, we have to review the distribution of squares of sin-
gular values of the channel matrix H, i.e. of the eigenvalues
of the matrix W. It can be proved that these ordered eigen-
values are described by joint Wishart distribution with PDF
given as

p(λ1, · · · , λNe) = KNe,Nn

Ne
∏

i=1

e−λiλNn−Ne

i

Ne
∏

i<j

(λi − λj)
2.

(10)
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The constant KNe,Nn depends on Ne, Nn, i.e. on the num-
bers of antennas at the both sides, and is given by

KNe,Nn =
πNe(Ne−1)

ΓNn(Nn)ΓNe(Ne)
(11)

where Γa(b) is the complex multivariate gamma function.
The general integration that yields the PDF of the k-th eigen-
value is given by the following

pk(λk) =

∫ ∞

λk

∫ ∞

λk−1

· · ·

∫ ∞

λ3

∫ ∞

λ2

· · ·

∫ λk

0

· · ·

· · ·

∫ λNe−1

0

p(λ1, · · · , λNe)dλNe · · · dλk+1dλ1dλ2 · · · dλk−1.

(12)
For the unordered eigenmodes the common share marginal
distribution of the eigenvalue of W is [26]

pu(λ) =
1

Ne

Ne−1
∑

k=0

k!λNn−Nee−λ

(k + Nn − Ne)!

(

LNn−Ne

k (λ)
)2

.

(13)
Based on [27], eq. 8.970.1, the equivalent form of Laguerre
polynomial can be used as

Ln
k(x) =

1

k!
exx−n dk

dxk

(

e−xxk+n
)

(14)

=
k
∑

i=0

(−1)i

(

k + n

k − i

)

xi

i!
. (15)

We follow the approach of [29], we want to rewrite squared
Laguerre polynomial into the direct form. We can use the
eq. 8.976.3 from [27] which claims7

(Ln
k (λ))2 =

Γ(k + n + 1)

22kk!

k
∑

l=0

(2l)!
(

2k−2l
k−l

)

l!Γ(n + l + 1)
L2n

2l (2λ).

(16)
Now, putting (14) into (16) we can arrive at (skipping details
given in [29])

pu(λ) =
1

Ne

Ne−1
∑

k=0

k
∑

l=0

2l
∑

i=0

{

Θ(i, l, k)λNn−Ne−ie−λ
}

(17)
where

Θ(i, l, k) =
(−1)i(2l)!

(

2k−2l
k−l

)(

2Nn−2Ne+2l
2l−i

)

22k−il!i!(Nn − Ne + l)!
. (18)

4.2 Correlated Rayleigh MIMO Channel
Following e.g. [30], we assume the correlation at the

receiver given by correlation matrix Σ. It can be shown the

joint PDF is given by

p(λ1, ..., λNmin) = K
|E(λ, µ)| |V1(λ)|

|V2(µ)|

Ne
∏

j=1

(xNn−Ne

j )

(19)
where the constant K is

K = KNe,Nn

Ne
∏

j=1

(j − 1)! |Σ|−Ne . (20)

Next, we need to define also the matrix V1

V1(λ) =











1 1 · · · 1
λ1 λ2 · · · λNe

...
...

. . .
...

λNe−1
1 λNe−1

2 · · · λNe−1
Ne











. (21)

Based on this expression the matrix V2 corresponds to

V2(µ) = V1(−[µ−1
1 , ..., µ−1

Ne
]). (22)

To finish our correlated model it remains to define

E(λ, µ) =











e−λ1/µ1 e−λ2/µ1 · · · e−λNe/µ1

e−λ1/µ2 e−λ2/µ2 · · · e−λN)e/µ2

...
...

. . .
...

e−λ1/µNe e−λ2/µNe · · · e−λNe/µNe











(23)
where we have used the vector notation µ = [µ1, ..., µNe ]

T ,
µ1 ≥ µ2 ≥ ... ≥ µNe are ordered eigenvalues of the corre-
lation matrix Σ.

4.3 Alamouti Scheme NT = NR = 2

When orthogonal Alamouti scheme for MIMO system
is employed with NT = NR = 2, we find that the total
received SNR for each symbol is (see e.g. [28])

γ =

4
∑

i=1

γi. (24)

We assume the Rayleigh fading between each pair of the
transmitting and the receiving antennas, i.e. γi, i = 1, 2, 3, 4
are exponentially distributed and γ is χ2 distributed.
Thus, its PDF is

pA(γ) =
γ3e−γ/γ̄

3!γ̄4
. (25)

5. Total Channel Inversion

If CSI is used by the transmitter to ensure the con-
stant received power, then the time-varying channel appears
at the receiver side as an ordinary time-invarying channel

7There is very small typo in [29], the index i should be replaced by 1.
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with AWGN. The long term maximum average symbol en-
ergy is denoted as Ē then the adaptive formula for a trans-
mitted power is given by the relation [3, 1]

E(γ) =
K

γ
. (26)

The ergodic symbol energy constraint has to be accom-
plished as

∫ ∞

0

K

γ
p(γ)dγ = Ē . (27)

It implies the necessary condition

K =
Ē

E[1/γ]
. (28)

Substituting (28) into the capacity term we can obtain the
generic way to get the channel capacity as

Ctot = log2(1 + K) = log2

(

1 +
Ē

E [1/γ]

)

. (29)

The problem is especially in the expectation in (28) which
diverges for some kinds of distribution, e.g. for SISO
Rayleigh fading. In the section about reduced eigenmode
space channel inversion for MIMO channel, we will show
that the same holds for the weakest sub-channel under both,
IID and correlated MIMO Rayleigh channel model. Figures
with some of these distributions appear also in the numerical
results section.

6. Truncated-Inversion

A disadvantage of the channel inversion is especially
the necessity to utilize large power for the sake of the large
fade compensation. Thus, we show a modification of previ-
ous method called in the literature the truncated inversion.
We obtain the truncated inversion by an introduction of the
marginal value γ0, which is a boundary between the execut-
ing of the inversion and the interruption of the transmission.
Afterwards, the power is allocated by the formula8

E(γ) =
K(γT )

γ
U(γ − γT ) (30)

where the parametrized value of K has to fulfill the condi-
tion which is parametrized by the cut-off value γT and the
total average energy Ē

K(γT ) =
Ē

∫∞

γT
1/γp(γ)dγ

. (31)

To get the capacity we have to find such γT which maximizes
the ergodic capacity (see e.g. [3])

Ctrc = max
γT

log2[1 + K(γT )]Pr(γ ≥ γT ). (32)

The transmitter adapts its transmitted symbol energy to
maintain the received SNR to be constant in time, from that
follows that we do not adapt the rate in time. For the re-
ceiver, the channel seems to be time-unvarying channel with
AWGN. The advantage of this implementation is its simplic-
ity. The disadvantage lies in the sub-optimality with regards
to the achievable capacity. The other very important and
sometimes omitted fact is that the truncation yields usually
very high probability of outage.

7. Channel Capacity under Inversion
for SISO & SIMO
To make this paper self-contained, in this section, we

provide the exhaustive review of the results obtained in clas-
sical papers about adaptive modulation [5, 6, 10, 3].

7.1 Rayleigh SISO
In Rayleigh case, there is the zero capacity of total

channel inversion since in order to invert the channel, the
long term average symbol energy constraint should have to
go to infinity. The solution is to truncate the inversion for
very deep fades. Substituting (4) into (32) we easily derive
the term for the capacity9 of channel inversion with the trun-
cation below the value γT

Csiso
trc = log2

(

1 +
γ

E1(γT /γ)

)

e−
γT
γ . (33)

7.2 Rayleigh SIMO–MRC
We can derive the achievable capacity with maximum

ratio combining and the total channel inversion (substitution
of (5) into (29))

Csimo
tot,mrc = log2 (1 + (NR − 1)γ) . (34)

Substitution of (5) into (32) gives us the capacity under the
truncated inversion and for NR ≥ 2 it holds10

Csimo
trc,mrc = log2

(

1 +
(NR − 1)!γ

Γ(NR − 1, γT /γ)

)

Γ(NR, γT /γ)

(NR − 1)!

= log2

(

1 +
(NR − 1)γ

PNR−1(γT /γ)
PNR(γT /γ)

)

. (35)

8U(�) is the unit step function
9En(x) =

R +∞

1
t−ne−xtdt, x ≥ 0 is the exponential integral of order n.

10Γ(., .) is the complementary incomplete Gamma function, and Pk(x) = e−x
Pk−1

j=0
xj

j!
denotes the Poisson distribution.



22 M. KNÍŽE, J. SÝKORA, GENERAL FRAMEWORK AND ADVANCED INFORMATION THEORETICAL RESULTS ON EIGENMODE ...

7.3 Rayleigh SIMO–SC
Analogously, using (6) and general formula (29), we

find that the total inversion capacity with selection combin-
ing is

Csimo
tot,sc = log2

(

1 +
γ

NRL1

)

(36)

where

L1 = lim
u→0+

NR−1
∑

k=0

(−1)k

(

NR − 1

k

)

E1((1 + k)u/γ). (37)

And the truncated inversion capacity is (substituting (6) into
(32))

C = log2

(

1 +
γ

NRL2

)

Pr(γ ≥ γT ) (38)

L2 =

NR−1
∑

k=0

(−1)k

(

NR − 1

k

)

E1((1 + k)γT /γ). (39)

Let be devised to [5] and also to references inside for analy-
sis done in details. Therein, one can find the graphical com-
parison of capacities listed above.

7.4 Nakagami SISO
Under general Nakagami fading (1), the total inversion

capacity follows from the distribution (2) and general for-
mula (29)

C = log2

(

1 +
m − 1

m
γ

)

(40)

analogously one may obtain the capacity for truncated ver-
sion and ∀m ≥ 1

Csiso
trc = log2

(

1 +
γΓ(m)

mΓ(m − 1, mγT /γ)

)

Γ(m, mγT /γ)

Γ(m)
.

(41)

7.5 Discrete Rate Adaptation with Total and
Truncated Channel Inversion
For completeness, we state the total inversion with only

finite set of constellations [6]. The expected achievable spec-
tral efficiency is

Rmax = log2

(⌊

1 +
G

∫∞

γT
(1/γ)p(γ)dγ

⌋

M

)

(42)

where bxc
M

denotes the highest number in set M less or
equal to x where M denotes the set of numbers of points in
the available constellations. The bit error rate limit which
has to be met in our adaptation is chosen as BER0 and

G = −1.6/ ln(5BER0). Obviously, the spectral efficiency
under this policy has one of values log2 M , M ∈ M, de-
pending on discrete steps in γ.

The truncated inversion gives the spectral efficiency

Rmax = maxγT log2

(⌊

1 +
G

∫∞

γT
(1/γ)p(γ)dγ

⌋

M

)

× Pr(γ ≥ γT ). (43)

8. Channel Capacity under Channel
Inversion for MIMO
For the full eigenmode space, there is no way how to

totally invert the sub-channels since for the unordered case
it holds

∫ ∞

0

1

λ
pu(λ)dλ → ∞. (44)

The mean symbol energy necessary to invert the channel di-
verges. For ordered case, the same harmful feature appears
only with the weakest eigenmode. Our solution is to exclude
the last (weakest) eigenmode from the transmission and the
reduced subset of eigenmodes is then totally invertible for
both ordered as well as unordered case. In the following
subsections, we are going to derive the capacities of these
mentioned algorithms more in details. For completeness, we
also mention the waterfilling capacity and the special case of
Alamouti scheme.

8.1 Optimal 2D Waterfilling in Space and Time
The optimal power allocation in ergodic space-time

communication scenario is obvious. Optimization yields wa-
terfilling in space and time [31, 32]. Under ergodic consid-
eration, there is the constant water level µ for any particular
channel realization within the 2D support (time and space).
Such power level has to fulfill the criterion11

Ē =

∫ ∞

0

Ne
∑

i=1

(

µ −
σ2

λi

)+

pu(λ1, ..., λNe)dλ1...dλNe .

(45)
The total long-term mean energy limit is Ē . It does not mat-
ter whether ordered or unordered eigenvalues are considered.
The instantaneous amount of power allocated in sum over
all eigenmodes is varied. Such policy exhibits the highest
achievable long time average capacity

Cwf = Eλ

[

Ne
∑

i=1

log2

(

µλi

σ2

)+
]

(46)

but it fails whenever the support of given constant number of
eigenmodes with constant capacity achievable in each block
is required strictly for any channel realization H.

11(x)+ = max(0, x)
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8.2 Alamouti Scheme
Employing (25) and (29) we have derived the sim-

ple closed form capacity for total channel inversion with
NT = NR = 2 Alamouti scheme [22] as

CA
tot = log2 (1 + 3γ̄) . (47)

Using (32), the closed form for truncated version
parametrized by the cutoff value λT can be found as

CA
trc = log2

(

1 +
6γ̄3

e−λT /γ̄(λ2
T + 2λT γ̄ + 2γ̄2)

)

×
e−λT /γ̄(λ3

T + 3λ2
T γ̄ + 6λT γ̄2 + 6γ̄3)

6γ̄3
. (48)

8.3 Full Eigenmode Space with Truncated In-
version

8.3.1Unordered Eigenmode Space
The capacity derivation assumes the unordered set of

eigenmodes obtained via channel decomposition. Then
based on (31) and (30), the threshold λT needs to be opti-
mized as

λT = arg max
λ̌T

Cun
trc(λ̌T ) (49)

where the truncated channel inversion capacity utilizing all
channel eigenmodes is

Cun
trc(λT ) = NeEλ

[

log2

(

1 +
K(λT )

σ2
U(λ − λT )

)]

(50)
for given signal to noise ratio Ē/σ2. Once the threshold is
found in advance the transmission off-line utilizing known
probabilistic channel description, the on-line power alloca-
tion is indeed very simple.

We can derive what the capacity of such truncated ver-
sion of unordered eigenmode space channel inversion is. The
goal is to perform the expectation in (50). First the term for
parametrized constant K(λT ) is necessary to be found. For
inverse value it has to hold

K−1(λT ) =
Ne

Ē

∫ ∞

λT

1

λ
pu(λ)dλ. (51)

Based on the fact
∫ ∞

λT

λNn−Ne−i−1e−λdλ = Γ[Nn + i − Ne, λT ] (52)

using X = Nn − Ne, we can rewrite (51) into

K−1(λT ) =

Ne−1
∑

k=0

k
∑

l=0

2l
∑

i=0

{

Θ(i, l, k)

Ē
Γ[X + i, λT ]

}

.

(53)

The final closed term for capacity of channel inversion in
MIMO IID Rayleigh channel parametrized by the cut-off
value is given by

Cun
trc(λT ) =

Ne−1
∑

k=0

k
∑

l=0

2l
∑

i=0

{

Θ(i, l, k)

Ē
Γ[X + 1 + i, λT ]

}

× log2

(

1 +
Ē

σ2
K(λT )

)

. (54)

8.3.2Ordered Eigenmode Space
When the truncation is done on the ordered full space,

the situation is complicated since the thresholds differ
among eigenmodes. The optimization searches the vector
of truncation λT = [λ1

T , ..., λNe

T ] such that

λT = arg max
λ̌T

Cord
trc (λ̌T ). (55)

The capacity term in the ordered case is

Cord
trc (λT ) = Eλ

[

Ne
∑

i=1

log2

(

1 +
Ki(λ

i
T )

σ2
U(λi − λi

T )

)

]

(56)
where Ki(λ

i
T ) has to be chosen to satisfy the total power

constraint

Ē = Eλ

[

Ne
∑

i=1

Ki(λ
i
T )

λi
U(λi − λi

T )

]

. (57)

Obviously such optimization suffers from infeasibility and
moreover the average allocated power is different among
eigenmodes.

8.4 Eigenmode Subspace with Total Inversion
8.4.1Unordered Eigenmode Subspace

The subspace channel is the set of the Ne − 1 strongest
eigenmodes of the original MIMO channel. After subtract-
ing the weakest one, the remaining eigenmodes can be con-
sidered again ordered or unordered. The unordered case ca-
pacity is

Cun
sub = (Ne − 1) log2

(

1 +
Ē

(Ne − 1)σ2Eλ̃[1/λ̃]

)

. (58)

8.4.2Ordered Eigenmode Subspace
When eigenmodes are ordered within the subspace we

can evaluate the capacity as

Cord
sub =

Ne−1
∑

i=1

log2

(

1 +
Ki

σ2

)

(59)

where the values Ki have to meet the total ergodic power
limit

Ē = Eλ1,...,λNe−1

[

Ne−1
∑

i=1

Ki

λi

]

. (60)
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9. Numerical Results

In Fig. 3, there are depicted 2D charts with joint
Wishart distributions of full and reduced eigenmode space.
For the full space with two eigenmodes NT = NR = 2,
one can observe the nonzero values along the line λ1 = 0 or
λ2 = 0. For the reduced space with NT = NR = 3, there
are zero values along these lines. That corresponds to the in-
fluence of the weakest eigenmode feature which causes the
infeasibility of the total inversion of the full set of eigenmode
disregarding the number of antennas (modes).

UNORDERED FULL SPACE, Nt=Nr=2

UNORDERED SUB−SPACE, Nt=Nr=3

pu(λ1, λ2)

psub
u (λ1, λ2)

Fig. 3. Full- and reduced-space, joint probability density
functions.
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Fig. 4. The strongest eigenmode marginal density function,
p(λ1) under correlated fading, NT = NR = 2.
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Fig. 5. The weakest eigenmode marginal density function,
p(λ2) under correlated fading, NT = NR = 2.
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Fig. 6. The shared eigenmode marginal density function (un-
ordered case), p(λ) under correlated fading, NT =
NR = 2.
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Fig. 7. Capacity—Eigenmode full-space truncated channel
inversion under correlated fading, NR = NT = 2.

In Fig. 4, there is shown the strongest eigenmode
marginal density for NT = NR = 2 under increasing cor-
relation. It is clear that this density stands totally invertible
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even for the highest correlation. Similarly, in Fig. 5 the in-
fluence of the correlation on the weakest eigenmode density
and the shared marginal density for unordered eigenmode
space is brought out in Fig. 6. These densities stay non-
invertible for arbitrary correlation coefficient.

In Fig. 7, there is sketched the capacity curve for full
eigenmode space and different correlation assuming NT =
NR = 2. We can see the capacity loss is significant mostly
for very strong correlation and high SNR. Very interesting
observation follows from Fig. 8. There is a negligible gap
among capacity curves so that although the influence on the
marginal distribution of the strongest eigenmode is pretty
high, the capacity stays resistant. In Fig. 9 and Fig. 10, very
similar situation but for the case of NT = NR = 3 is shown.
One can see a stronger influence of correlation on the ca-
pacity. Moreover, based on all these capacity figures it is
clear that although the subspace capacity is always below
the truncated full space capacity, the loss is very small and
almost unrecognizable in most of SNR values. The empha-
sis should be given to the fact that in the subspace eigen-
mode channel inversion, there is zero transmission outage
probability so that the total sustainability of the transmission
might be guaranteed. See e.g. [19] for the charts of such
very high probability in the case of truncated inversion. The
performance of the inversion employed with the orthogonal
Alamouti code [22] is provided in Fig. 11. There is truly
negligible gap between the capacity of truncated and total
inversion and also the loss in comparison with optimal wa-
terfilling is very small. The trade-off between the outage
probability and the capacity of the truncated inversion is il-
lustrated in Fig. 12. One can find out, the designer is free
to pick out two options with given capacity, the more burst
like with higher occurrence of transmission interruption or
the more sustainable transmission.
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Fig. 8. Capacity—Eigenmode sub-space total channel inver-
sion under correlated fading, NR = NT = 2.
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Fig. 9. Capacity—Eigenmode full-space truncated channel
inversion under correlated fading, NR = NT = 3.
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Fig. 10. Capacity—Eigenmode sub-space total channel inver-
sion under correlated fading, NR = NT = 3.
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Fig. 11. Capacity—Alamouti scheme with optimal waterfill-
ing allocation versus sub-optimal inversion, NR =
NT = 2.
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Fig. 12. Transmission outage probability versus capacity
trade-off, NT = NR = 5, SNR = {0; 2.5, ...,25}
dB.

10. Conclusions

In this paper, the concept of MIMO eigenmode chan-
nel inversion policy is developed in very general framework
including even the SISO and SIMO results. To provide
zero outage transmission probability and constant achiev-
able rate there is our conclusion that it is absolutely suffi-
cient to exclude only the weakest eigenmode from the trans-
mission. The remaining eigenmode sub-set becomes totally
invertible regardless particular fading realization. This pa-
per proves that there is negligible capacity gap of subspace
eigenmode total inversion with zero outage compared to the
optimized full space total inversion with unacceptable prob-
ability of outage. Very novel and useful extension to the cor-
related MIMO Rayleigh channel is provided. We have found
the joint and marginal distributions even for correlated case.
Somewhat more surprising fact is that we have also proved
that the correlation does not make more eigenmodes non-
invertible and so that the only one which has to be removed
is again just the weakest eigenmode. The capacity of cor-
related MIMO Rayleigh channel is also carefully studied.
Other novel points of the paper are the closed form expres-
sions for truncated full space eigenmode inversion and for
Alamouti NT = NR = 2 scheme. Such expression enables
analytical investigation of mutual capacity versus transmis-
sion outage probability trade-off.
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