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Abstract. The paper presents a family of the sliding win-
dow RLS adaptive filtering algorithms with the regulari-
zation of adaptive filter correlation matrix. The algorithms 
are developed in forms, fitted to the implementation by 
means of parallel computations. The family includes RLS 
and fast RLS algorithms based on generalized matrix in-
version lemma, fast RLS algorithms based on square root 
free inverse QR decomposition and linearly constrained 
RLS algorithms. The considered algorithms are mathe-
matically identical to the appropriate algorithms with 
sequential computations. The computation procedures of 
the developed algorithms are presented. The results of the 
algorithm simulation are presented as well. 
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1. Introduction 
Adaptive signal processing [1] is an essential part of 

modern digital signal processing. Theoretical results, ob-
tained in the field, are widely used in adaptive filters de-
sign. Communication channels equalization, echo cancel-
lation, suppression of spatially separated noise sources – 
these are only a few examples of the practical use of such 
filters [2]. The efficiency of the applications depends on 
the algorithms that the adaptive filters are based on. 

In the applications the simplest gradient adaptive fil-
tering algorithms are basically used because the algorithms 
have small arithmetic complexity. However, the filters, 
which use such algorithms, are not good enough for the 
processing of non-stationary signals. The Recursive Least 
Squares (RLS) algorithms [3] are more appropriate for the 
processing of the signals, but they require more computing 
resources. The algorithms complexity is not a problem in 
modern Digital Signal Processors (DSP) anymore, as the 
devices have enough resources for the implementation of 
such algorithms [4]. Besides, as a few DSPs can be inte-
grated in a chip, such chips can be used for compact im-

plementation of signal processing algorithms based on 
parallel computations. Due to the opportunity, the de-
velopment of parallel adaptive filtering algorithms be-
comes an important task. 

2. Problem Formulation and Solution 
The given paper presents a method of RLS algorithms 

description, which allows the development of the algo-
rithms in forms, fitted to the implementation by means of 
parallel computations. The Sliding Window (SW) RLS 
algorithms with the regularization of correlation matrix for 
multichannel adaptive filters with unequal number of com-
plex-valued weights in channels are considered. The algo-
rithms diversity includes unconstrained and constrained 
RLS algorithms, based on generalized Matrix Inversion 
Lemma (MIL) and square root free inverse QR decomposi-
tion (QRD). 

Most of RLS algorithms are based on the use of MIL 
for the recursive inversion of adaptive filter correlation 
matrix. To provide the tracking properties of the filters, 
when non-stationary signals are processed, exponential 
weighting of the signals or (and) SW is used. In SW case, 
MIL is applied twice per sample. Due to the limited num-
ber of samples involved in the estimation of correlation 
matrix, SW RLS algorithms can be unstable sometimes. 
Dynamic regularization of the matrix can be used to stabi-
lize RLS algorithms [5]. The SW and regularization are the 
reasons of the increased arithmetic complexity in com-
parison with growing window (Prewindowed, PW) RLS 
algorithms or the absence of the regularization. 

The computation load of the complex adaptive fil-
tering algorithms implementation can be decreased by 
means of parallel computations. To get the parallel RLS 
algorithms, methods [6] can be used. Based on the meth-
ods, parallel algorithms fitted to the implementation by 
means of two or four processors were developed [6-8]. 

This paper considers another simple method of the 
RLS algorithms description, which allows the developing 
of the regularized PW RLS, SW RLS and regularized SW 
RLS algorithms of adaptive filtering, including Linearly 
Constrained (LC) versions of the algorithms, [9-12] as the 
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sequence of the same parallel computations, similar to 
those of the same named PW RLS algorithms.  

A block-diagram of M-channel adaptive filter is 
shown in Fig. 1. The filter can have unequal number of 
weights in channels. 
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Fig. 1. Multichannel adaptive filter. 

The objective of the LC SW least square filtering is to 
minimize the energy of the error between the desired signal 
d(k) and the adaptive filter output: 
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is a vector of M-channel 

adaptive filter weights;  

is a vector of weights in m-th channel of the filter; 
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signals in m-th channel; CNJ and fJ are matrix and vector of 
J linear constraints; Nm is a number of weights in m-th 
channel;  is a total number of adaptive filter 

weights; k is a sample number and λ is a forgetting factor. 
Superscripts H and T denote Hermitian transpose and 
transposition of a vector or a matrix; one subscript N, J, or 
F denotes the dimension of vectors and square matrices, 
two subscripts NJ or NF denote the dimension of rectan-
gular (non-transposed) matrices. 

The solution of the problem (1) is the vector of adap-

tive filter weights [13]: 
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If SW and dynamic regularization are used, the adap-
tive filter correlation matrix is defined as 
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The cross correlation of χN(k) and d(k) is defined as 
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In (3) and (4), ()*means complex conjugate, µ=λL and 
ξ2 is a small value of a dynamic regularization parameter 
[5]. Parameter ξ2 and parameter δ2 for the initial regulariza-
tion of correlation matrix are selected as ξ2, δ2≥0.01 σ2, 
where σ2 is the variance of adaptive filter input signals. The 
dynamic regularization vector ρN(k) is defined as 
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The first item in equation (2) is the solution of the 
problem (1) without constraints. The second item is de-
termined by linear constraints. As a result, the RLS algo-
rithms, which compute weight vector (2), also consist of 
two computational procedures: unconstrained and LC ones.  

MIL [1], which is used in sequential RLS algorithms, 
is expressed as R-1=B-1-B-1cA-1dB-1, where A=dB-1c+1 and 
R=B+cd. Here c and d are vectors. It allows the using of 
the lemma sequentially to invert matrix (3). 

The application of the MIL [6] allows the getting of 
parallel forms for regularized and SW RLS algorithms. The 
MIL [6] is very cumbersome and the resulting mathemati-
cal descriptions of parallel algorithms [6-8] are cumber-
some as well. 

In general case, see [14], MIL is expressed as 
11111 −−−−− −= DBCABBR  (6) 

where A=DB-1C+S, C and D are matrices. The equation 
(6) is a key tool for the development of the parallel SW 
regularized RLS algorithms, considered in this paper. To 
use the equation (6), the matrices C=[y,x,y,v]=[µ0.5χN(k-
L),χN(k),µ0.5ξρN(k-L),ξρN(k)], D=CH and S=diag(-1,1,-1,1) 
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have to be created. The columns in matrix XNF(k) cause the 
diversity of RLS algorithms: PW, regularized PW, SW and 
regularized SW. 
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The using of the equation (6) allows the getting of a 
RLS algorithm of adaptive filtering in parallel form: 
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The procedure uses a number of matrix and vector 
computations that are consequently the vector and scalar 
ones in the proper sequential RLS algorithms. The matrix 
of Kalman gains GNF(k) contains F columns. The columns 
are computed independently each other. So, the matrix can 
be computed by means of F processors, i.e. in parallel. In 
the algorithm the vector dF(k) is defined as [µ0.5d(k-
L),d(k),0,0], and error signal at the output of adaptive filter, 
see Fig. 1, is defined as αN,χ(k)=d(k)-hH

N(k-1)χN(k)= 
αF

(2)(k), where αF
(2)(k) means the second element of the 

error vector αF(k). Vectors dF(k) and αF(k) are row-vectors.  
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quential RLS algorithms. Denominator in the equation (2) 
is a scalar variable in a sequential algorithm, while it is a 
matrix with FxF elements in the parallel algorithm. The 
matrix ensures the mathematic identity of the sequential 
and parallel RLS algorithms. Because F≤4, the matrix 
inversion does not effect the algorithm complexity if 
N>>F. So, the complexity of the parallel RLS algorithm is 
O(N2F) arithmetic operations per iteration. Similarly, fast 
(computationally efficient, O(NF) complexity) parallel 
RLS algorithms can be developed on basis of use of the 
least squares linear prediction theory [15]. A parallel ver-
sion of the multichannel Fast Kalman (FK) algorithm is 
shown below. 
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Permutation matrices  and T  enable the 
building of the multichannel fast RLS algorithms with 
unequal number of weights in channels [16]. The using of 
the matrices does not require the additional arithmetic 
operations. The matrices just rearrange Kalman gains. To 
establish the rearranging rules for the given M and N

)(
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m, the 
matrices product can be calculated in advance. Here, the 
matrices are for the case M=3: 
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vectors ρ  are composed as 
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and vectors ρ  are composed as 
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The matrices for other values of M can be created simi-
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A parallel form of Fast Transversal Filter (FTF) is 
based on the recursive updating of the matrices 
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A parallel form of Fast a Posteriori Error Sequential 

Technique (FAEST) algorithm is distinguished from the 
parallel FTF algorithm by the recursive update of the in-
verse matrices  
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Similarly, a parallel form of a stabilized FAEST algo-
rithm can be developed. A multichannel parallel version of 
the algorithm is shown below. The details of the single 
channel prototype of the algorithm can be found in [17]. 
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It is well known, that RLS and fast RLS adaptive fil-
tering algorithms can be also developed by the using QRD. 
If the adaptive filter weights are required, the inverse QRD 
has to be used. Usually, QRD RLS algorithms have the 
square root operations. The operations can be excludes by 
means the scaling of the variables involved in calculations 
[18]. Using the duality between the fast RLS algorithms 
and the fast QRD based least squares algorithms [19], 
parallel multichannel version of the square root free in-
verse QRD fast RLS algorithm [20] can be developed. The 
algorithm is presented below. 
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Similarly, the stabilized form of the parallel inverse 

QRD-based algorithm can be developed as well. 

The identity of the parallel and the same named se-
quential fast RLS algorithms is ensured by means of the 
square matrices [  and K  which have 
F×F elements. The matrices disappear in sequential SW 
regularized fast RLS algorithms. They become the scalar 
variables, known in adaptive filter theory as the inverse of 
likehood ratios. 
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The above considered parallel algorithms can be used 
in adaptive filters without linear constraints and for the 
calculation of Kalman gain in LC RLS algorithms. In the 
parallel LC RLS algorithms, MIL (6) is also used for the 
calculation of the matrices Γ ,  

 and Q , 
caused by linear constrains in (2). There are three forms of 
the LC RLS algorithms [13]. The parallel forms of the 
algorithms are developed by the using of steps similar to 
those considered in [13]. 
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0)

 [ ]
),,,1,,,,,1(

)0()0(,)0()0()0(

,)0()0(,)0(

,)0(,0)10(,...,0)0(
,)10(,...,)0(

,)10(,...,)0(

11

1

121

1 −−

−

−−−

=

==

==

==+−=
=+−=

=+−=

MNN
N

JNJNNJ
H
NJNJNJ

NJNNJNN

NFNF

NNNN

NNNN

diag

Ldd
L

L

λλλλ

δ

KKKΛ

fQhΓCΓQ

CRΓΛR

OX
0ρ0ρ

0χ0χ:Init.

 

Kk ,,2,1 K=For  
1) Calculation of G  )(kNF

2)
  )()( kk NF

H
NJJF GCV =

3)
  )1()()( −= kkk NJ

H
NF

H
JF QXN

4) 
[ ]










−
+×

×−−=′

)()(
)()(

)()()1()(

kk
kk

kkkk

JF
H
JFF

H
JFJF

J

H
JFNFNJNJ

VNI
NV

I

NGQQ

 

5) ( )
[ ])(

)()( 1

k

kk

NJ
H
NJJ

NJ
H
NJNJNJNJ

QCI

CCCQQ
′−×

×+′=
−

 

6)
 

 )()1()()( kkkk NF
H
NFF Xhdα −−=

7)  )()()1()( kkkk H
FNFNN αGhh +−=′

8)
 [ ])()()()( kkkk N

H
NJJNJNN hCfQhh ′−+′=  

kforEnd  

4. Simulation 
Simulations, which confirm the considered parallel 

algorithms efficiency, are presented in the section in Fig. 2 
– Fig. 5. Multichannel versions of PW LC RLS and un-
regularized SW LC RLS algorithms are compared in a 
three channel linear filter identification problem and non-
stationary (speech) input signals. Filter performance is 
observed during 50000 iterations, corresponding to the 
same number of signal samples. In Fig. 2 and Fig. 4, the 
vertical arrows indicate the mentioned frequencies and 
horizontal dashed line indicates the level of constraints. 

Fig. 2 demonstrates that two linear constraints 0 dB of 
adaptive filter transfer function |H(f)|, applied at f=1 kHz 
and f=2 kHz selected frequency points, are provided by the 
both algorithms. The Echo Return Loss Enhancement 
(ERLE) is frequently used in the evaluation of the quality 
of an identification problem solution. The ERLE is the 
ratio of the energy of the echo signal d(k) and the energy of 
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the suppressed echo αN,χ(k), measured at each iteration of 
adaptive filtering algorithm as follows: 
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Here, the length B is approximately selected as 30 ms that 
corresponds to a stationarity interval of speech. From Fig. 
3, it can be seen that the performance of the SW algorithm 
in terms of ERLE is better, meaning less error at the adap-
tive filter output in comparison with PW ones. 

It is interesting to examine the behavior of the algo-
rithms as presented in Fig. 3. At the beginning of the adap-
tation process, both algorithms provide approximately 
similar performance. However, the PW algorithm does not 
properly track the changing processed signals. At the same 
time, the SW algorithm demonstrates better performance 
(approximately 20 dB higher ERLE in the considered case) 
due to its ability to track the change in the input signals. In 
the examples, L=256 samples or approximately 30 ms. The 
window length for ERLE calculation is also 256 samples.  

Fig. 4. Simulations results, transfer function: 1 - SW LC RLS 
algorithm with regularization, 2 - SW LC RLS algorithm 
without regularization. 

 

 

Fig. 5. Simulations results, ERLE: 1 - SW LC RLS algorithm 
with regularization, 2 - SW LC RLS algorithm without 
regularization. 

The improvement of the SW RLS algorithms is achieved 
by means of dynamic regularization of correlation matrix, 
see Fig. 4 and Fig. 5. The regularized algorithm also pro-
vides the mentioned constraints of adaptive filter transfer 
function. Besides, average ERLE in the case is compared 
with unregularized algorithm and even higher. It means 
more stable performance of the regularized algorithms in 
comparing with unregularized ones. 

Fig. 2. Simulations results, transfer function: 1 - PW LC RLS 
algorithm without regularization, 2 - SW LC RLS algo-
rithm without regularization. 

 

So, the above results confirm the operation of the pro-
posed algorithms. Better efficiency of constrained SW RLS 
algorithms was also demonstrated in comparison with PW 
algorithms, in situations where the input signals of the 
adaptive filter are nonstationary. Furthermore, algorithm 
improvement is achieved due to the regularization of the 
correlation matrix inversion. 

5. Conclusion 
Fig. 3. Simulations results, ERLE: 1 - PW LC RLS algorithm 

without regularization, 2 - SW LC RLS algorithm with-
out regularization. 

Thus, a simple approach to the description of the mul-
tichannel parallel RLS algorithms diversity, caused by the  
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possible modifications of correlation matrix, was presented 
in the paper. The parallel algorithms are mathematically 
identical to the same named sequential algorithms. Identity 
means the same performance if adaptive filters have the 
same parameters and process the same signals. Total num-
ber of arithmetic operations of the parallel algorithms and 
the same named sequential algorithms is approximately the 
same. However, if F processors are used, the computa-
tional load per processor is decreased F times in the paral-
lel algorithms. These algorithms can be used in all tradi-
tional applications of adaptive filters. 
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