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Abstract. The paper compares three methods for computer 
simulation of transients on transmission lines with losses 
and nonlinear behavior, namely distributed LC model, 
FDTD (Finite-Difference Time-Domain) method, and a 
new and very effective Method of Slices. The losses are 
responsible for attenuation and shape changes of the 
waves as function of time and distance from the source. 
Special behavior of the line due to voltage-dependent ca-
pacitance of the line is considered in detail. The non-linear 
nature of the line causes that the higher is the voltage the 
higher is the velocity of propagation. Then, the waves tend 
to tilt over so that their top moves faster than their base. As 
a result “tsunami waves” are created on the line. Funda-
mental algorithms are presented in Matlab language. 
Several typical situations are solved as an illustration of 
individual methods. 
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1. Introduction 
A wave on a linear transmission line is described by 

partial differential equations for voltage u(t,x) and current 
i(t,x). Both quantities are functions of time t and distance 
from near end of the line x. The equations are [2, 3] 
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with corresponding initial and boundary conditions. 

The symbols L0, C0, R0 and G0 are primary line pa-
rameters, i.e. inductance, capacitance, resistance and 
conductance per unit length. In a general case, however, 
they may be functions of voltage or current.  

Numerical solution of these equations can be best 
based on the Laplace transformation. 

In the case of the one-dimensional transformation the 
voltages u(t,x) and currents i(t,x) are transformed from time 
domain to the domain of complex variable s to get U(s,x) 
and I(s,x), respectively [3]. The resulting differential equa-
tions with independent variable x are not partial any more. 
The sought functions of time can be obtained by any nu-
merical inversion method, for instance [7]. 

A very effective method is the two-dimensional trans-
formation. Time t is transformed to s and in the second step 
distance x is transformed to another complex variable q. 
Again, very effective methods for numerical inversion are 
available [8, 9]. 

In case of a non-linear line another procedure has to 
be applied. In this paper we present 2 classical simulation 
procedures, namely the modeling of the line by a cascade 
connection of a finite number of LC sections and the so-
called FDTD (Finite-Difference Time-Domain) method. 
We shall show their possibilities and limitations and then, 
based on results of some typical problems, we develop a 
new Method of Slices. This method is very effective and 
allows solving even situations where the two previously 
mentioned procedures fail.  

Further on, we assume that the line may be nonlinear 
due to its voltage-dependent capacitance 
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where Cd = dq/du is the dynamical capacitance and Up  is 
a parameter characterizing the non-linearity (it is the 
voltage for which the capacitance drops to C0/4). 

2. Cascade Connection of LC Sections 
The total length len of the line is divided into m par-

tial sections. Each of them is simulated with the help of an 
LC network. The line is thus substituted by the ladder 
network shown in Fig. 1 [4, 5, 6]. 

Each section has an inductor L0 and two capacitors 
Cd/2 so that the first and the last condensers are Cd/2 while 
all the inner capacitors have the capacitances Cd. In parallel 
with each capacitor there is a conductance G0 and in series 
with each inductance there is a resistance R0. The circuit 
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with m nodes is described by m independent node voltages 
and m-1 currents of the inductors. 

 

 
Fig.1. The LC equivalent scheme. 

For the first and the last node there holds (consider only a 
signal source at the near end) 
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respectively. 

For the k-th inner node voltage we have 
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and for the current of the j-th inductor there is 
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The equations take into consideration even the losses 
caused by resistances R0 and conductances G0 so that they 
hold for any general transmission line. 

The simulation can be done by Matlab language of 
mathematical computations. In the main program we define 
the basic parameters of the problem. Then we call the dif-
ferential equation solver  
[t,u]=ode45('NLCfun',[0 tx],zeros(2*m-
1,1)); 

The function NLCfun is used to define the system of 
ordinary differential equations (3a, b, c, d): 

function xdot=NLCfun(t,x) 
global m Co Lo Ro Go G1 G2 A to Ti Up  
sig=A*G1*(sin(pi*t/Ti))^2*(t<=Ti); 
xd(1)=(sig-(G1+Go/2)*x(1)- 
       x(m+1))/(Co/(1+x(1)/Up)^2)*2; 
                      % node voltage u1 

xd(m)=(x(2*m-1)- 
  (G2+Go/2)*x(m))/(Co/(1+x(m)/Up)^2)*2; 
                               % node m 
for k=2:m-1    % node k and current k-1 
  xd(k)=(x(m+k-1)-x(m+k)- 
        Go*x(k))/(Co/(1+x(k)/Up)^2); 
  xd(m+k-1)=(x(k-1)-x(k)-Ro*x(m+ 
             k-1))/Lo; 

end 
xd(2*m-1)=(x(m-1)-x(m)-Ro*x(2*m-1))/Lo; 
         % current of the last inductor 
xdot=xd'; 

global transfers the parameters from the main program. 
The signal (current) at the near end is defined as 
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with amplitude Ui1G1and duration (at the bottom level) Ti. 

Since in practical situations the primary parameters 
L0, C0 have values that differ by many orders of magnitude 
the program uses normalized quantities. Each section 
represents a sector of 1 meter, the time step is 1 s. Fig.2 
shows an example of the situation with parameters 
C0=2 F/m, L0=1 H/m, G0=0, R0=0, Up=4 V, G1=1.414 S, 
G2=0.4714 S. The line is loss-less and matched at the 
source (neglecting the non-linearity) and terminated at the 
far end by resistance R2 causing reflection with reflection 
coefficient +0.5. 

 
Fig.2a. Distribution of voltage and current along the line at t=50, 

125 and 200 s; Gauss impulse Ui1=1 V, t0=40 s, Ti=12 s, 
Up=4 V.  

3. FDTD Model of the Line 

The basic equations can be rearranged to get 
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The line will be again divided into m sections with the 
length ∆x=len/m. Also the total solution interval is divided 
into nt subintervals ∆t=tmax/nt. This will be the base of the 
FDTD method. The derivatives in Eq. (4a,b) are replaced 
by approximate expressions containing finite differences to 
get equations (5a) and (5b) 
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Fig.2b. Voltage and current waveforms as functions of time at 

the near end (x=1 m) and at x=70 m. 

Thus the voltage 
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and the current 
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The values of u(t,x) and i(t,x) have been replaced by 
the average value from the two neighboring sections as 
follows from the fact that the table of currents is shifted by 
∆x/2 with respect to the table of voltages. 

The numerical calculations are realized in loops for 
m-1 voltages and m-1 currents according to the following 
scheme: 
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The calculation proceeds in steps of ∆t. In each step 
the actual voltage is calculated from the value of voltage 
and 2 currents from the previous step. The calculation of 
current proceeds in a similar manner. The process is 
straightforward with no need for iterations. Therefore it is 
very fast and efficient. 

Due to a certain lack of symmetry of both tables (the 
table of currents is shifted by ∆x/2 with respect to the table 
of voltages) the voltage at the near end as well as the cur-
rent at the far end are zero. Therefore, in the original ver-
sion described in [1] the near end is considered short-cir-
cuited and the far end open. To enable simulation of 
arbitrary sources and terminating resistors at both ends it is 
necessary to complete the tables by the relations 
u(1)=ui1(t)-Ri1i(1) and i(m)=(u(m)-ui2(t))/Ri2.  

In Matlab the decisive part of the algorithm may have 
the following form: 
% fdtd3 – lossy and non-linear line 
% signals at both ends 
clear 
m=100;            % number of sections 
nt=250;          % number of time steps 
dtx=1;           % delta t/delta x 

Co=2;  Lo=1; Ro=0;  Go=0;  % primary 
                           % parameters 
Up=4;      % parameter of non-linearity 
dRL=Ro/(2*Lo); %auxiliary time constant 
 %(dGC is in general voltage dependent) 
Ri1=1/sqrt(2); 
Ri2=3/sqrt(2);            %terminations 
u=zeros(m,1); 
i=zeros(m,1);        % prepare  u and i 
tsave=[50 125 200]; 
          % what times for the results? 
xsave=[1 70]; 
      % what distances for the results? 
to=40;    % center of the Gauss impulse 
Ti=12;    % length of the Gauss impulse 
Ui1=1;       % amplitude of the impulse 
Ui2=0;      % amplitude of the far end 
              %  sin^2 impulse 
Ti2=40;    % length of the far end 
              %  sin^2 impulse 
nn=0;        % counter of ux, ix curves 
for t=1:nt      % main loop for time tt 
  ui1=0;  ui2=0; 
  kk=1;          % counter of ut curves 
  if xsave(1)==1 kk=2; 
  end; 
  for ku=2:m            % loop for u(x) 
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    dGC=Go/(2*Co/(1+u(ku)/Up));%auxiliary 
    if (kk<=length(xsave)) 
      ksu=xsave(kk); 
    end; 
    u(ku)=u(ku)*(1-dGC)/(1+dGC)... 
    +dtx/(1+dGC)/(Co/(1+(u(ku)/Up)^2))* 
    (i(ku-1)-i(ku)); 
    if ku==ksu 
      ut(t,kk)=u(ksu); 
      kk=kk+1; 
    end;     
  end; 
  ui1=Ui1*exp(-0.5*((to-t)/Ti)^2); 
                         %Gauss impulse 
  u(1)=ui1-Ri1*i(1);  % near end signal 
                      %          source 
  u1(t)=u(1); 
  if xsave(1)==1  
    ut(t,1)=u(1); 
  end; 
  kk=1;          % counter of it curves 
  for ki=1:m-1          % loop for i(x) 
    if (kk<=length(xsave)) 
      ksi=xsave(kk); 
    end; 
  i(ki)=i(ki)*(1-dRL)/(1+dRL)... 
       +dtx/(1+dRL)/Lo*(u(ki)-u(ki+1)); 
    if ksi==ki 
    it(t,kk)=i(ksi); 
    kk=kk+1; 
    end; 
  end; 
  ui2=Ui2*(sin(pi*t/Ti2))^2*(t<=Ti2);  
  i(m)=(u(m)-ui2)/Ri2; % far end signal 
                                 source 
  if xsave(length(xsave))==m 
    it(t,kk)=i(m); 
  end; 
  if any((t-tsave)==0) % save according 
                               to tsave 
    nn=nn+1; ux(:,nn)=u;  
    ix(:,nn)=i;   
  end; 
end;           % end of main loop for t 
 

The program allows choosing the ratio ∆t/∆x. If it 
equals to 1 (as given in the program) it is considered that 
∆t=1 s, ∆x =1 m. 

The results obtained with this program are virtually 
equivalent to those from the LC model with the equal 
number of sections m. The computation, however, is much 
faster. 

3.1 Stability Limits of FDTD Method 
Practical experience with the program shows that the 

explicit numerical method may be unstable under some 
circumstances. Instability (voltage and current rise very 
fast and unlimitedly) is demonstrated mainly with loss-less 
lines. The stability limits depend on ∆t/∆x and on 

parameters L0 and C0. For L0<1 or C0<1 the solution is 
always unstable. Maximal allowable values of the internal 
source resistance for lower values of L0 and C0 are given in 
Tab.1. 
 

 Co=1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 

Lo=1 1.10 1.45 1.58 1.65 1.70 1.74 1.77 1.79 1.81

1.25 1.81 2.00 2.10 2.16 2.21 2.25 2.27 2.29 2.31

1.50 2.36 2.52 5.61 2.67 2.71 2.75 2.77 2.79 2.81

1.75 2.89 3.03 3.11 3.17 3.21 3.25 3.27 3.29 3.31

2.00 3.40 3.58 3.62 3.67 3.71 3.74 3.77 3.79 3.80

2.25 3.91 4.04 4.12 4.17 4.21 4.24 4.26 4.28 4.30

2.50 4.42 4.54 4.62 4.67 4.71 4.74 4.76 4.78 4.80

2.75 4.92 5.04 5.12 5.17 5.21 5.23 5.26 5.28 5.29

3.00 5.42 5.54 5.61 5.66 5.70 5.73 5.75 5.77 5.79

Tab.1. Maximal allowable values of source resistance as 
function of parameters  

For C0>3 F  the value of Rimax depends only a little on C0 
but with higher L0 it grows linearly. 

4. Discussion of the Two Methods 
Fig.3 shows four examples of wave propagation 

solved with the program fdtd3 .The solution parameters 
were C0=1 F/m, L0=2 H/m, m=100 m, nt=100 s Ri1=1 Ω, 
input signal was a Gauss impulse. Individual curves corre-
spond to Up=1000 V (virtually linear line), Up=4 V, 2.5 V 
and 1.5 V. Lower values of Up result in larger delay of top 
of the impulse. The waveforms for Up=1.5V oscillate since 
they are not unique functions of time and distance. 

 
Fig.3. Simulation of voltage and current waves for different 

values of parameter Up 
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It is interesting that the voltage and current waveforms 
have a very similar shape in spite of the non-linear charac-
ter of the line. Ratio of voltage to current at any point for 
higher Up (lower effect of non-linearity) is virtually con-
stant and equal to the wave resistance Rvs=u(t)/i(t). How-
ever, this resistance is not  
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as expected. The velocity of propagation of the impulse is 
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The results are collected in Tab.2. In the table ux and 
ix are the maximal values of voltage and current for the 
corresponding Up, ux/ix is their ratio, dmax is the distance of 
the top from the signal source. Values of the specific delay 
τ=1/v [s/m], the wave resistance Rv and the actual distance 
d‘ are calculated from parameters L0 and Cd(ux). It is evi-
dent that the ratio ux/ix =Rvs and also the voltage at the near 
end (and also voltage the at any point along the line) de-
pends on the transfer factor 
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is static capacitance of the line. 

In case of Up<=2 V the nonlinear character of the line 
causes that the wave top is ahead of the base. The wave 
tilts and converts into a shock wave. Thus the solution of 
differential equations is not a unique function of time any 
more. The solution is not representative. Therefore it is 
necessary to find another simulation algorithm. 

Note: similar results were obtained even with the non-
linearity given by 
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Tab.2. The important values taken from Fig.3. 

 

5. Method of Slices 
The suggested method is based on the facts revealed 

in the previous section. It considers a loss-less line. The 
input signal is composed of individual thin voltage slices 
and these slices propagate along the line quite inde-
pendently. Due to the assumed loss-less character of the 
line the voltage level of each slice is keeping its value 
constant during the propagation. Its velocity depends on 
the corresponding dynamical capacitance Cd (9). The wave 
resistance however is dependent on the static capacitance 
Cs (11). 

The near end voltage equals to 
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Since the voltage u1(t) appears at both sides of the equation 
it is necessary to calculate it for each time instant by 
solving the non-linear equation  
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In Matlab language this task can be solved simply as 
u1=fzero(‘fu1’,1);   % near end voltage 

The corresponding function is then 
% fu1 near end voltage, called by fzero 
function u1=fuu(u) 
 
 
global m Co Lo Up Ri1 R2 A Ti ui1 Rvs1 
Rvs1=sqrt(Lo*(1+u/Up)/Co); 
u1=u-ui1*Rvs1/(Ri1+Rvs1); 

Up ux ix dmax ux/ix τ Rv Rvs u’x i’x  u’x/i’x d‘ 

1000 0.586 0.415 44 1.414 1.414 1.414 1.414 0.586 0.415 1.414 42.4 

4 0.6027 0.399 50 1.51 1.155 1.224 1.520 0.603 0.397 1.519 51.9 

2.5 0.6105 0.392 55 1.56 1.137 1.760 1.577 0.611 0.387 1.579 52.7 
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The point with voltage level u1(t) covers the distance d in 
tt1(t)=d/v(u1(t))+t. As soon as the wave reaches the far end 
of the line it is reflected with the coefficient of reflection 
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dependent on both the voltages of forward and reflected 
waves. The reflected voltage ur will be again obtained by 
iteration just like in case of the near end voltage. 

The main loop of the program may be for instance 

for t=1:tx            % main loop for t 
  ui1=A*sin(pi*t/Ti)^2*(t<=Ti); 
                  % int.source  voltage 
  u1=fzero('fu1',1); 
                     % near end voltage 
  ut1(t)=u1; 
  it1(t)=u1/Rvs1; 
  temp=1+u1/Up;    % auxiliary constant 
  tau1=sqrt(Lo*Co/temp^2); 
  tt1(t)=tau1*d+t; 
                     % time delay of uf 
  if tx>=m*sqrt(Lo*Co) 
    uf=u1;  ur=fzero('fu2',0.5); 
    tau2=sqrt(Lo*Co/(1+ur/Up)); 
    tt2(t)=tau1*m+(m-d)*tau2+t; 
                     % time delay of ur 
    ut2(t)=ur;  it2(t)=-ur/Rvs2; 
  end; 
end; 
with function 
% fu2, far end voltage after reflection 
function ur=fu2(x) 
global m Co Lo Up R1 R2 A Ti ui1 uf 
Rvs1 Rvs2 
Rvs2=sqrt(Lo*(1+x/Up)/Co); 
ur=x-uf*(R2-Rvs1)/(R2+Rvs2); 

It is still necessary to solve the problem of setting up the 
vectors of time, distance, voltage and current. The tables of 
distances for the forward and reflected waves do not con-
tain equal points. The two tables have to be merged in a 
single table and values of voltages and currents in the new 
points obtained by interpolation. The part of the program 
that secures this operation looks like this 
% merge tables of u and i 
for jtt=1:length(tt1) 
  if tt1(jtt)>tt2(1) 
    jttmn=jtt-1; 
    break, 
  end; 
end; 
for itt=1:length(tt2) 
  t1=tt2(itt); 
  if t1>tx 
    ittmx=itt; 
    break, 
  end; 
                    % max. index in tt2 

end; 
for itt=1:ittmx-1 
  for jtt=jttmn:length(tt1)-1 
                        %  interval ttl 
    t1=tt1(jtt); 
    t2=tt1(jtt+1);   
    t3=tt2(itt); 
                    % instant from  tt2 
    if (t3>t1)&(t3<=t2) 
                          % interpolate 
      p=polyfit([t1 t2],[ut1(jtt)  
        ut1(jtt+1)],1); 
      ut2(itt)=ut2(itt)+polyval(p,t3); 
      p=polyfit([t1 t2],[it1(jtt)  
        it1(jtt+1)],1); 
      it2(itt)=it2(itt)+polyval(p,t3); 
      break     
  end; 
end; 

 
Fig.4. Comparison of the FDTD (solid line) with the method of 

slices (denoted by crosses) 

 
Fig.5. Shock waves simulated by the method of slices 
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Fig. 4 compares the voltage waves with Up=4 V and 
Up=3 V simulated by two methods, namely the FDTD 
method and the method of slices. The other solution pa-
rameters are m=200, nt=150, C0=2 F/m, L0=1 H/m, 
Ri1=0.6 Ω with sin2 input signal of 1 V amplitude and 60 s 
duration. It is evident that if Up>=4 V, the agreement of the 
results is very good. For larger non-linearity the method 
FDTD (and obviously even the LC ladder network) do not 
give usable waveforms while the results of the method of 
slices look quite satisfactory. 

Fig. 5 shows the voltage and current waves obtained 
by the method of slices for Up=1.5 V at the distance of 
70 m with the total line length of 100 m and the 
terminating resistance R2=2.121 Ω. Both forward and 
backward waves are plotted. The shape of all the shock 
waves suggests that the classical simulation methods would 
not offer reasonable results.  

6. Conclusion 
The paper deals with possible ways of simulating 

wave propagation along a non-linear transmission line. It 
shows that the classical LC and FDTD methods give valu-
able results only if the non-linear character of the line is 
not very distinct and no shock waves are formed. Shock 
(“tsunami”) waves are not unique functions of time or 
distance and classical mathematical methods fail to pro-
duce usable results (the solution oscillates). That is why a 
new Method of Slices was developed. This method does 
not suffer from such limitations and is more effective. 
A certain drawback of the method is that in its present form 
it cannot solve the problems with lossy lines. On the other 
hand, when the wave is attenuated its amplitude is low and 
the non-linear character of the line does not demonstrate 
itself so markedly. 

Acknowledgment 
The work on this project was supported by the grant 

of the Czech Grant Agency GAČR Nr. 102/03/0241. 

References 
[1] SULLIVAN, D., M. Electromagnetic simulation using the FDTD 

method. IEEE Press Series on RF and Microwave Technology, New 
York, 2000. 

[2] BENDA, O. Teoretická elektrotechnika, Teória vedení (Theory of 
Electrical Engineering - Theory of Transmission Lines, in Slovak). 
Bratislava: SVŠT, 1987. 

[3] VALSA, J., SEDLÁČEK, J. Teoretická elektrotechnika 2 (Theory of 
Electrical Engineering 2, in Czech). Brno: VUTIUM University of 
Technology, 2000. 

[4] VALSA, J. An attempt to simulate the wave propagation along a 
non-linear transmission line. In Proc. of the 26th International Conf. 
on Fundamentals of Electrotechnics and Circuit Theory IC-SPETO 
2003. Gliwice-Niedzica (Poland), 2003, vol. 2, p. 347-349. 

[5] NOVOTNÝ, K. Mathematical modeling of the solitons in non-linear 
lumped networks. In Proc. of 10th International Scientific Conference 
Radioelektronika 2000, Bratislava (Slovakia), pp. P-27 – P-28. 

[6] VALSA, J. Simulation of a non-linear loss-less infinite transmission 
line. In Proc. of 15th International Scientific Conference Radioelek-
tronika, Bratislava (Slovakia), 2004. 

[7] VALSA, J., BRANČÍK, L. Approximate formulae for numerical 
inversion of Laplace transforms. International Journal of Numerical 
Modelling: Electronic Networks, Devices and Fields, 1998, vol.11, 
pp. 153-166.  

[8] BRANČÍK, L., VALSA, J. A fast computing method of numerical 
inversion of two-dimensional Laplace transforms using FFT. Signals, 
Control, Computers Conference SSCC’98, Durban (South Africa), 
1998, pp. 305-307. 

[9] BRANČÍK, L. Techniques of Time-Domain Simulation of Transmis-
sion Lines Based on Laplace Transformation Methods, Thesis for 
Habilitation, BUT Brno, 1999. 

About Author 
Juraj VALSA was born in 1933. He graduated as MSc. in 
radio engineering in 1956 and in 1965 obtained the PhD at 
the Military Academy in Brno, Czechoslovakia. From 1960 
to 1971 for total 6 years he taught Circuit Theory at MTC 
in Cairo, Egypt. Then he worked for 15 years as leader of a 
research group at the Research Institute for Rotating Elec-
trical Machines. Since 1988 he was assistant professor and 
since 1991 professor of theoretical electrical engineering at 
the Brno Technical University. During academic year 
1993/94 he acted as visiting professor at the University of 
Waterloo, Ontario, Canada. He retired in 2003. 


