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Abstract. The paper deals with the broadband modeling of 
microwave structures by finite-element methods. The atten-
tion is turned to original enhancements of accuracy, effici-
ency and stability of finite-element codes. 

The partial improvements are based on novel approxima-
tions both in the spatial domain and in the time one, in the 
adoption of complex frequency hopping, fast frequency 
sweep and envelope finite-element techniques. In the pa-
per, a possible hybridization of approaches is discussed. 

Proposed finite-element schemes are applied to the analy-
sis of canonical longitudinally homogeneous transmission 
lines in order to demonstrate their advantages. 

Keywords 
Finite-element method, broadband modeling, time-
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1. Introduction 
Numerical analysis of microwave structures can be 

performed in the frequency domain or in the time domain. 

In the frequency domain, the problem formulation is 
based on Maxwell’s equations assuming the harmonic 
nature of all the quantities [1]–[3]. Consequently, the for-
mulation does not contain time derivatives, which are re-
presented by the complex frequency multiplication. The 
frequency-domain analysis is therefore relatively simple 
and CPU-time modest. 

The time-domain analysis assumes a general time 
behavior of both the excitations and the responses [4]–[6]. 
The time-domain formulation increases the dimension of 
the problem and complicates the solution (time derivatives 
of the computed quantities appear). The time domain ana-

lysis is therefore more complex and time demanding. On 
the other hand, if the microwave structure is going to be 
analyzed in a relative wide band of frequencies, the result 
can be obtained within a single run of the time domain ana-
lysis (if the structure is excited by a narrow pulse contain-
ing those frequencies); this is more efficient compared to 
several runs of independent frequency-domain analyses. 

In the paper, we concentrate on differential methods. 

At the present, finite difference time domain method 
(FDTD) is dominant in the area of differential time domain 
methods [7], [8]. FDTD is based on the approximation of 
partial derivatives in Maxwell’s equations (both in the time 
and in the space) by central finite differences. Thanks to 
the ingenious discretization cell proposed by Yee [9], ob-
tained solutions naturally meet the third Maxwell’s equ-
ation and the fourth one, and the computational algorithm 
is extremely efficient. On the contrary, FDTD computes 
electromagnetic field in nodes of the discretization mesh 
only. Modeling of curved surfaces is rather problematic, 
and building inhomogeneous discretization meshes brings 
difficulties [4]. 

As shown in [5], all the described problems of FDTD 
are removed by time domain finite elements (TDFE). Mo-
reover, we can create a TDFE scheme, which is absolutely 
stable for an arbitrary length of the spatial step and the 
temporal one [5]. 

The paper concentrates on TDFE, which is based on 
solving the wave equation in the time domain. For the 
electric field intensity inside the analyzed volume, the wa-
ve equation is of the form [10] 
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where  E is the electric field intensity vector, µ = µ0 µr  de- 
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notes permeability, ε = ε0 εr is permittivity, and σ is con-
ductivity inside the analyzed volume. The vector Ji repre-
sents the excitation current density, r is the position vector 
and t denotes time. 

In order to obtain a unique solution, the wave equa-
tion (1) has to be completed by boundary conditions on the 
surface Γ around the analyzed volume Ω. Generally, boun-
dary conditions can be expressed in the form [10] 
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where n is the unitary vector, which is perpendicular to the 
surface Γ surrounding the analyzed volume Ω, Y represents 
the surface admittance of the surface Γ, and U is a known 
value representing sources on Γ. 

When applying the general TDFE scheme [4], [5] to 
the solution of (1) with respect to (2), the volume Ω is sub-
divided to tetrahedrons (finite elements) and the computed 
quantity is formally approximated over tetrahedrons: 
known basis functions1 Ni(r) are multiplied by unknown 
approximation coefficients2 ei(t). Since the approximation 
does not meet the wave equation (1) perfectly, a residual 
term has to be added to the left-hand side of (1). Since the 
minimum residual error corresponds to the most accurate 
solution of (1), the residual is consequently minimized. 

The residual error can be minimized by the method of 
weighted residua [13], [14]: the error is multiplied by 
weighting functions Wj(r), the product is integrated over 
the analyzed volume Ω, and the result is set to zero. If the 
error is weighted as many times as many unknown appro-
ximation coefficients we have (N), Maxwell’s equations 
are converted to the set of N algebraic equations in the ge-
neral form [10] 
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where E(t) is column vector of temporal responses of the 
approximation coefficients of the finite-element method, 

                                                           
1 In the general formulation, the basis functions are of the 

vectorial edge nature [11], [12]. Edge basis functions 
consist of unitary vectors, which are oriented to the di-
rections of edges of finite elements. This construction 
ensures continuity of field components on the interface 
of dielectric layers. 

2  Basis functions do not depend on time because the ana-
lyzed structure is time-invariant. When performing 
time-domain analysis, the computed field is not in the 
steady state, and hence the approximation coefficients 
are functions of time. 

i.e. E(t) = [e1(t), e2(t), ..., eN(t)] T. Elements of the vector f 
representing sources is given by [10] 

( ) ( ) ( )
Ω

∂
∂
⋅= ∫

Ω

d
t

ttf ii
,

0
rJrWµ  , (4a) 

and elements of matrices T, S, and B can be evaluated fol-
lowing [10] 
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In (4), Wi(r) are vectorial weighting functions, and Nj(r) 
are vectorial basis ones, Ω represents the volume of the 
analysis, and Γ is the surface surrounding the volume Ω, 
J(r, t) denotes the vector of the source current density, 
µ = µ0 µr denotes permeability, ε = ε0 εr is permittivity, and 
σ is conductivity inside the analyzed volume, n is a normal 
to the surface Γ, and c is the velocity of light. 

Solving the algebraic problem (3), the column vector 
of unknown approximation coefficients E(t) is obtained. 

Accuracy of the analysis is significantly influenced by 
used basis functions and weighting ones [3]. In order to re-
duce the error of the analysis, we propose special quasi-
cubic basis functions and weighting ones (a more accurate 
spatial field distribution), and we introduce a high-order 
approximation in time (a more accurate temporal field dis-
tribution). Details are given in Section 2 of the paper. 

In order to enhance the efficiency of the finite ele-
ment code, we combine the finite element analysis and the 
concept of complex frequency hoping [15], [16]. Details 
are given in Section 3 of the paper. 

Time domain analyses produce time responses of 
computed field quantities. Since the conventional parame-
ters of microwave structures (scattering parameters, impe-
dances, directivity patterns, gains, etc.) are formulated in 
the frequency domain, time responses are usually proces-
sed by fast Fourier transform (FFT), which increase com-
putational demands and decrease the accuracy of the analy-
sis by an additional error. In order to overcome this diffi-
culty, we propose a direct time domain computation of 
parameters as explained in Section 4. 

Section 5 is devoted to proposing an original hybrid 
method, which combines fast frequency sweep and enve-
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lope finite elements [17]–[19]. Properties of the novel hy-
brid method are compared with conventional approaches. 

Section 6 concludes the paper. 

2. Enhancing Accuracy of TDFE 
Numerical analysis in the time domain is accurate 

when providing an accurate spatial distribution of compu-
ted field quantities (e.g., field intensity inside the volume Ω 
of an analyzed cavity resonator), and also accurate time 
responses of those quantities (e.g., time response of field 
intensity inside a cavity resonator excited by a Gaussian 
pulse). Spatial accuracy can be enhanced by using special 
basis functions and weighting ones, temporal accuracy can 
be improved using high-order approximations of time be-
havior. 

2.1 Quasi-Cubic Basis and 
Weighting Functions 
Novel basis and weighting functions are going to be 

explained in modal analysis3 of a longitudinally homogene-
ous waveguide consisting of perfectly electrically conduc-
tive (PEC) walls in the vacuum. Since there are no interfa-
ces of dielectric layers in the analyzed structure, edge basis 
and weighting functions can be replaced by nodal ones [3]. 
Due to the longitudinal homogeneity, the cross-section of 
the waveguide is satisfactory to be discretized by two-di-
mensional triangular finite elements. 

Then, the general finite-element solution (3) of the 
wave equation (1) can be rewritten to the form [20] 

( ) 022
0 =−+ TESE βk  (5) 

where E is the column vector of nodal values of electric 
field intensity, k0 denotes free space wave number, and β is 
phase propagation constant. Matrices of coefficients S and 
T (see the general form 4b, c) can be now expressed as 
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where A(e) denotes the area of the e-th finite element, ϑn
(e) 

is the n-th angle of the e-th finite element, the matrix Q1 is 
given as 

                                                           
3  Modal analysis can be used for evaluating critical 

(eigen)frequencies and field distributions of correspon-
ding (eigen)modes. In case of a longitudinally homoge-
neous transmission line, transversal resonances are in-
vestigated in a fact [20]. 
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and Q2, Q3 can be obtained by permuting Q1. Coefficients 
t1, t2, q1 and q2 in (6) depend on the type of basis and 
weighting functions used. For low-order splines (linear, 
quadratic and cubic ones), the coefficients are simple rati-
onal constants. 

Comparing the purely quadratic spline and the purely 
cubic one, both of them contain a negative quadratic term, 
and both of them equal 1 for x = 0. Considering this fact, 
we can create a more general quasi-cubic spline 

1;01
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23

23
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 (7) 

that is continuous and smooth over the finite element. 

Following the finite-element procedure, quasi-cubic 
splines (7) are integrated, and coefficients t1, t2, q1, q2 from 
(6) are expressed in the form of functions depending on 
parameters b1 and b2. Next, we consider the basis functions 
are zero for x = ±1, splines behave anti-symmetrically, and 
the basis functions differ from weighting ones. 

Enforcing the analysis to converge to the exact solu-
tion of (1) for infinitely small finite elements, the following 
values of the coefficients t1, t2, q1, q2 are obtained: 

54637658.01 +=q  , (8a) 

54637658.02 −=q  , (8b) 

51526226.01 +=t  , (8c) 

41288106.02 +=t  . (8d) 

The derived quasi-cubic basic function and the weighting 
one are depicted in Fig. 1. 
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Fig. 1. The proposed quasi-cubic basis function (a) and the qua-

si-cubic weighting function (b). 

Properties of the developed quasi-cubic functions were 
tested on the analysis of the rectangular, longitudinally 
homogeneous waveguide R100. Results are depicted in 
Fig. 2 and compared with linear basis and weighting func-
tions (Galerkin’s approach). 

Fig. 2 proves a better accuracy of quasi-cubic splines 
for the discretization mesh consisting of 22 × 10 rectangu-
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lar cells, which are composed from two triangular finite 
elements. 

Similar results are obtained when using quasi-cubic 
splines for approximating the spatial distribution of the 
electromagnetic field in the TDFE method [21], [22]. Hen-
ce, the novel quasi-cubic functions can be concluded to be 
advantageous both in the modal analysis and in the time-
domain one. 
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Fig. 2. Percentage error in the resonant frequency of the rectan-

gular waveguide R100 for the transversally magnetic modes 
(a) and the transversally electric modes (b). The cross section 
of the waveguide was divided to 22 × 10 rectangular cells, 
which consist of two triangular finite elements. 

In the next paragraph, we turn our attention to the approxi-
mation of time responses in the TDFE analysis. 

2.2 High-Order Temporal Approximations 
When time responses of field quantities are going to 

be evaluated, highly accurate approximation of their spatial 
distribution has to be accompanied by highly accurate ap-
proximation of temporal responses also. 

The most common TDFE versions [5] approximate 
the computed time response by a second-order polynomial 
resulting in a two-step algorithm. If a more general algo-
rithm is going to be developed, higher-order polynomials 
have to be applied. In the paper, we concentrate on the 
three-step approach. 

A novel three-step algorithm will be explained in the 
analysis of a three-dimensional cavity resonator consisting 
of PEC walls in the vacuum. For modeling purposes, tetra-
hedral nodal elements will be used [3]. 

The formulation of the third-order approximation is 
based on Lagrange polynomials [3]. Due to symmetry, no-
dal values of the computed quantity e, which correspond to 
equidistant time instants –3δt/2, –δt/2, δt/2, 3δt/2, are deno-
ted as e-2, e-1, e1 a e2, and the polynomial is of the form [21] 
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Here e(t) is the continuous temporal approximation of the 
quantity e, superscripts denote the indexes of time samples 
of e, δ t is the sampling step, and t is time. Comparing 
functional values of derivatives of e(t) in nodes and values 
of corresponding finite differences, we obtain a= –1, b = 3, 
c = –3, and d = 1. 

We evaluate the first and the second derivative of (9), 
substitute them to the semi-discrete equation (3), and per-
form the time weighting of the residual. Enforcing the sta-
bility conditions, we can formulate: 

• Symmetric implicit algorithm 
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• Symmetric explicit algorithm 
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• Non-symmetric implicit algorithm 
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• Non-symmetric explicit algorithm 
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• Fully explicit algorithm 
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In (10), matrices T, B, S and f are given by relations (4) 
with vectorial edge basis functions N(r) and weighting 
ones W(r) replaced by scalar nodal basis functions N(r) 
and weighting ones W(r). Next, En is column vector of the 
n-th time sample of the finite-element approximation coef-
ficients, i.e. En = [e1

n, e2
n, ..., eN 

n] T. Finally, δ t denotes the 
temporal sampling period. 

Symmetrical algorithms (10a), (10b) were derived to 
reduce the dispersion error of the analysis; those expecta-
tions were not fulfilled. On the other hand, the explicit 
algorithm (10b) exhibits better stability compared to the 
conventional two-step algorithm. 

Algorithms (10) were tested analyzing a rectangular 
resonator of dimensions 150 mm × 180 mm × 130 mm. 
The resonator volume was divided into 20 × 20 × 20 finite 
elements. The resonator was analyzed within the frequency 
range from 0 to 4 GHz with the frequency step 0.5 MHz. 
Analysis was performed using the conventional two-step 

algorithms and the proposed three-step ones. For compa-
rison purposes, results of the analyses were transformed to 
the frequency domain, and computed spectra were compa-
red (see Fig. 3). Obviously, they produce identical results. 
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Fig. 3. Dispersion error of resonant frequencies of the rectangu-

lar cavity resonator using a two-step algorithm and three-step 
algorithms (10). Results are identical. 

Non-symmetrical algorithms (10c) and (10d) were derived 
for the analysis of lossy structures, structures containing 
perfectly matched layers, or structures terminated by absor-
bing boundary conditions. For closed lossless structures, 
(10c) and (10d) are identical with the conventional two-
step algorithms in the explicit form or the implicit one. The 
fully explicit algorithm (10e) was derived for the potential 
time-domain hybridization of finite elements and boundary 
integrals [21], [24]. 

3. Enhancing Efficiency of TDFE 
In the previous section, we discussed ways of enhan-

cing accuracy of the finite-element analysis by improving 
spatial and temporal approximations of electromagnetic 
fields. In this section, we concentrate on improving effici-
ency of the analysis. For that purpose, we originally adopt 
the technique known as the Complex Frequency Hopping 
(CFH) [15]. 

The CFH method understands the analyzed structure 
as a transmission system, which transfer function is appro-
ximated in Laplace domain. Accuracy of the approximation 
is consequently increased using Padé approximation and 
hops of complex frequency [15]. 

Adoption of CFH for finite-element analysis will be 
explained on modeling longitudinally homogeneous trans-
mission lines. Hence, two-dimensional triangular elements 
are used for discretizing cross-section of the analyzed wa-
veguide. 

For the described situation, we solve again the wave 
equation (1), which is converted by the finite element ap-
proach to the matrix form (3). In the next step, (3) is trans-
formed to Laplace domain [25] 

[ ] ( ) ( )ssss RXSBT =⋅++2  , (11) 



RADIOENGINEERING, VOL. 14, NO. 4, DECEMBER 2005 53 

where s denotes complex frequency, matrices T, B, and S 
are given by (4), X(s) = L{E(t)} is Laplace image of the 
column vector of unknown field temporal responses, and 
R(s) is Laplace image of excitation vector 

( ) [ ] ( )sss FEBEETR +⋅+′+⋅= 000  (12) 

with F(s) = L{f(t)}, E0 is the initial value of the vector E, 
and E’0 is the value of the first derivative in instant t = 0. 

Equation (11) is formally identical with the descrip-
tion of a linear system. The excitation vector R(s) corres-
ponds to the input signals, the vector of unknown temporal 
responses X(s) corresponds to the output signals, and the 
transfer function is given by H-1(s) = Ts2 + Bs + S. 

Padé approximation is based on the expansion of the 
transfer function H(s) in the investigated frequency band to 
Taylor series [3.1]. The investigated frequency band is se-
quentially divided to subintervals, transfer function is ap-
proximated on subintervals, and its functional values are 
compared on the borders of those subintervals. The sequ-
ential dividing continues as long as the differences of the 
approximation on the borders of subintervals do not meet 
the prescribed value. 
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Fig. 4. Percentage error in the resonant frequency of the rectan-

gular waveguide R100 for the transversally magnetic modes 
(top) and the transversally electric modes (bottom). The cross 
section of the waveguide was divided to 44 × 20 rectangular 
cells (top) and 88 × 40 cells (bottom). Rectangular cells con-
sist of two triangular finite elements. 

CFH performance was tested in the modal analysis of the 
waveguide R100. In Fig. 4, percentage error of critical fre-
quencies of transversally magnetic (top) and transversally 
electric (bottom) modes is depicted. CFH values are related 

to the results of the TDFE analysis performed on the twice-
sparser finite-element mesh. 
 

 44×20 vs. 22×10 88×40 vs. 44×20 

CFH 30.7 211.5 

TDFE 90.2 720.5 

Tab. 1. CPU-time demands of CFH versus TDFE in the modal 
analysis of the waveguide R100. In case of TDFE, the twice-
sparser finite-element mesh was used. 

Results show TDFE more accurate compared to CFH: for 
the twice-denser finite-element mesh, CFH produced com-
parable percentage error than TDFE. On the other hand, 
CPU-time demands of TDFE are much higher even if a 
twice-sparser mesh compared to CFH is used [26], [27]. 

4. Time Domain Evaluation 
of Parameters 
Most parameters, which are used for the description 

of microwave systems, are evaluated and formulated in the 
frequency domain (impedance, directivity patterns, scatte-
ring parameters, etc.). If the numerical analysis is perfor-
med in time domain, time responses of computed quantities 
contain discrete frequency components from the whole 
frequency band excited by the excitation pulse. In order to 
evaluate conventional parameters, time responses have to 
be transformed in the Fourier sense, and isolated harmonics 
have to be used for evaluating frequency-domain parame-
ters. Such an approach decreases efficiency and accuracy 
of the time-domain approach. In order to solve the descri-
bed problem, Envelope Finite Elements (EVFE) [17]–[19] 
are originally adopted in this paper. 

Adoption of EVFE for time-domain analysis and con-
sequent time-domain parameter evaluation will be demon-
strated on computing wave impedance of a longitudinally 
homogeneous transmission line. Hence, a two-dimensional 
problem is again solved. 

In the original formulation of the EVFE, field com-
ponents and sources are expressed in the form [17]–[19] 

( ) ( ) [ ]tjtVtU cωexp=  , (13) 

where U(t) is a field/source component, V(t) denotes time-
dependent complex envelope of that quantity, and ωc is 
carrier frequency. 

In the presented approach, field/source components 
are assumed in the form of the product of two functions. 
The first function v depends on transversal spatial compo-
nents x, y and time t, the second component Φ depends on 
the longitudinal spatial component z and time t. The tem-
poral dimension enables the formulation of transient phe-
nomena, spatial dimensions are separated in order to model 
well the wave propagation in longitudinally homogeneous 
transmission lines [21]. 

For the magnetic field intensity vector, we get 
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( ) ( ) ( )tztyxhtzyxH ,,,,,, Φ=  . (14) 

Similarly, electric field intensity vector E = [ex, ey, ez] T and 
sources J = [jx, jy, jz] T can be described; the term Φ(z, t) is 
shared by all the quantities. 

Terms H in the formulation (14) and sources J are 
substituted to the wave equation (1), which is formulated 
for magnetic field intensity vector. Then, the equation is 
solved. 

In order to make the equation solvable, time indepen-
dence of terms containing Φ has to be assumed. This yields 
the condition [21] 

( ) ( ) ( )tωjz-γz,t cc expexpΦ =  (15) 

with the complex propagation constant γc (longitudinal di-
rection, carrier ωc). Several mathematical rearrangements 
and simplifications yield [21] 
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where Jt = [jx, jy] T are transversal component of the current 
source, hz is the longitudinal component of the magnetic 
field intensity, γc is the complex propagation constant in 
the longitudinal direction, kc denotes free-space wave num-
ber for carrier frequency ωc. Finally, µ, ε, and σ denote 
permeability, permittivity and conductivity of media inside 
the analyzed structure. 

Applying finite-element procedure to (16), we obtain 
the EVFE magnetic field alternative of (3) [21] 
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with 

( ) Ω×∇= ∫
Ω

dWf zii J~  . (18) 

Matrices S and T are given by (4), and the column vector 
of finite-element coefficients is H = [h1, h2, ..., hN] T. 

Time derivatives in (17) are handled by two-step im-
plicit algorithm [21]. 

When time responses of the longitudinal component 
of the magnetic field intensity hz are known, wave impe-
dance of the analyzed transmission line can be evaluated 
[28]. First, auxiliary integrals are numerically handled [21] 
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Second, transversal field components are computed [21] 

[ ]212
1)( IIe +=
ε

ny
  , (20a) 

[ ]212
)( IIh −=

cnx   . (20b) 

Third, wave impedance can be evaluated [21] 
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Z =   . (21) 

Here, FFT denotes fast Fourier transform. 

Functionality of the method was tested on the analysis 
of the longitudinally homogeneous rectangular waveguide 
R100. For the analysis, the finite-element mesh consisting 
of 22 × 10 rectangular cells was used. Wave impedance of 
the dominant mode TE10 was evaluated from the critical 
frequency to 13 GHz, and was compared to the analytically 
computed values. 

The obtained results demonstrate that EVFE can be 
applied to the analysis of longitudinally homogeneous 
transmission lines and the evaluation of wave impedance. 
The percentage error is minimal at the central frequency, 
and rises with the increasing distance from it [21], [29]. 
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Fig. 5. Percentage error of the numerically evaluated wave im-

pedance of the waveguide R100 on discrete frequencies (re-
lated to analytic results). 
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Fig. 6. Percentage error of the numerically evaluated wave im-

pedance of the waveguide R100 during the broadband ana-
lysis on the central frequency 9.5 GHz (corresponds to zero 
frequency in the chart). 

5. Hybrid Methods 
Hybrid methods are very popular in today’s compu-

tational electromagnetics: mutual combination of different 
approaches can yield a combination of their advantageous 
features and elimination of their drawbacks. 

In section 4, we demonstrated the ability of Envelope 
Finite Elements (EVFE) to perform an accurate analysis 
within a relatively broad band of frequencies. In section 3, 
we applied the concept of Complex Frequency Hopping 
(CFH) to enhancing efficiency of the finite-element code. 
Hybridizing EVFE and CFH, a broadband accurate and 
efficient finite-element modeling tool can be obtained. The 
novel method is called here Fast Frequency Sweep – Enve-
lope Finite Elements (FFS-EVFE). 

Adoption of FFS-EVFE for finite-element analysis 
will be explained on modeling longitudinally homogeneous 
transmission lines. Hence, two-dimensional triangular ele-
ments are used for discretizing cross-section of the analy-
zed waveguide. 

Solving the wave equation (1), we substitute the elec-
tric field intensity vector and the source current in the en-
velope form (13) there. Applying finite-element procedure, 
we obtain the FFS-EVFE alternative of (3) [21] 
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Matrices R, S and T are given by (4), ωc denotes carrier 
angular frequency, and Wi is i-th vectorial weighting func-
tion. Finally E^ = [e^

1, e^
2, ..., e^

N] T is column vector of co-
efficients representing complex envelopes of electric field 
intensity, and J^ = [j^

1, j^
2, ..., j^

N] T is column vector of 
complex envelopes of source currents (13). 

Applying Laplace transform to (22), we formally ob-
tain the CFH equation (11), which is now formulated for 
images of complex envelopes X(s) = L{e^(t)}, and for R(s) 
we obtain 

( ) [ ] ( )sss QEBEETR ˆˆˆˆ
000 +⋅+′+⋅=  (24) 

with Q^(s) = L{F^(t)}. 

Equation (11) for envelopes is then solved using CFH 
algorithm and Padé approximation. 

The proposed method was used for modal analysis of 
the waveguide R100. One of side walls was removed (mo-
deled by absorbing boundary condition), the others were 
perfectly electrically conductive. The finite-element mesh 
consisted of 44 × 20 rectangular cells. 
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Fig. 7. Percentage error of the critical frequency of the wavegu-
ide R100 with removed side wall. Carrier frequency fc = 20 
GHz (top) and fc = 30 GHz (bottom). Results of EVFE and 
FFS-EVFE are related to analytical computations. 
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Obviously, the percentage error is lower for FSS-
EVFE in a short distance from the carrier frequency, and 
lower for EVFE in a longer distance from the carrier fre-
quency. 

Comparison of CPU-time demands of both the met-
hods is rather complicated. EVFE demands depend on the 
frequency resolution of the analysis and are independent on 
the bandwidth of the analysis. On the contrary, FFS-EVFE 
demands are influenced by the width of the analyzed band 
and frequency resolution of the analysis does not play any 
important role [21], [30]. 

6. Conclusions 
In the paper, original enhancements of time-domain 

finite elements for broadband modeling of microwave 
structures are proposed: 

• Accuracy of the spatial approximation of the electro-
magnetic field distribution is improved by introducing 
original quasi-cubic basis and weighting functions. 
The smoothness of both the quasi-cubic approxima-
tion and its derivatives is another improvement. 

• Accuracy of the temporal approximation of electro-
magnetic field has been assumed to be improved by 
introducing an original third-order polynomial appro-
ximation and resulting three-step algorithm for eva-
luating new time samples from existing ones. The 
proposed three-step algorithm does not exhibit better 
accuracy, but brings advantages in a more general 
formulation (the two-step algorithm is a special case 
of it). 

• CPU-time demands of the finite-element analysis are 
reduced by the original exploitation of complex fre-
quency hopping and Padé approximation. Thanks to 
the hops of complex frequency, the time of the analy-
sis is approximately three-times shorter, and the accu-
racy is close to pure time-domain finite elements. 

• Computation of parameters directly in the time do-
main is originally proposed in order to eliminate 
Fourier transforms of time-domain results. Time-
domain broadband analysis is efficiently done using 
envelope finite elements, transversal field components 
are computed from longitudinal ones, and consequ-
ently, wave impedance is evaluated. 

• Potential hybridization of different approaches is de-
monstrated by the original combination of envelope 
finite elements for the efficient broadband analysis 
and fast frequency sweep for further reduction of 
CPU-time demands. 

All the described approaches were applied to the solution 
of the vectorial wave equation (1), which was converted to 
the matrix form by the finite-element procedure (3). The 
basic matrices stay unchanged for all the approaches, and 

(3) is slightly modified by basic matrix operations. This 
makes the algorithms simply implementable. 
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