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Abstract. The paper is aimed to the multi-objective optimi-
zation of wire multi-band antennas. Antennas are numeri-
cally modeled using time-domain integral-equation met-
hod. That way, the designed antennas can be characterized 
in a wide band of frequencies within a single run of the 
analysis. Antennas are optimized to reach the prescribed 
matching, to exhibit the omni-directional constant gain and 
to have the satisfactory polarization purity. Results of the 
design are experimentally verified. 

The multi-objective cost function is minimized by the gene-
tic algorithm and by the particle swarm optimization. Re-
sults of the optimization by both the multi-objective met-
hods are in detail compared. 

The combination of the time domain analysis and global 
optimization methods for the broadband antenna design 
and the detailed comparison of the multi-objective particle 
swarm optimization with the multi-objective genetic algo-
rithm are the original contributions of the paper. 
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1. Introduction 
In today’s radio communication systems, broad- and 

multi-band antennas play more and more important role. In 
order to make the design of such antennas as efficient as 
possible, we propose to combine the time-domain integral-
equation (TDIE) method for the antenna analysis, and glo-
bal optimization techniques for improving parameters of 
the analyzed antenna model. 

If TDIE is used for the antenna analysis, the investi-
gated antenna structure can be characterized within a single 
run of the analysis when excited by a very short pulse, 
which spectrum covers the whole frequency band of the 
interest [1]. Nevertheless, the TDIE suffers from stability 
problems in certain situations [2]–[5], and hence, its popu-
larity is lower compared to other numerical techniques. 

Genetic algorithms (GA) were introduced to the com-
putational electromagnetics like the efficient global optimi-
zation tool in the middle of nineties [6]–[8]. For the design 
of broad- and multi-band antennas, GA were applied in [9], 
[10] in conjunction with frequency domain method of mo-
ments – the analysis was run thousands times. In order to 
overcome this difficulty, a technique of the optimal selec-
tion of frequency points in the wide band of the design was 
developed [11]. Also, the first attempt to move the analysis 
into the time domain was published in [12] – as a compu-
tational tool, the finite-difference time-domain (FDTD) 
method was used. 

An intensive activity has been focused also on the 
development of multi-objective genetic optimization. In 
[13] and [14], the multi-objective genetic algorithm is ap-
plied to the design of broadband wire antennas using the 
frequency domain moment method as the computational 
tool. In [15], the moment method was replaced by the fre-
quency domain finite element method combined with 
boundary integral equation method to design absorbers. 
Obviously, no so-far published approach combines TDIE 
and GA for multi-objective optimization of antennas. 
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Fig. 1. The optimized wire antenna consists of N linear seg-

ments of the length dl. During the optimization, orientation of 
segments ϕn and ϑn can be changed. 

Particle swarm optimization (PSO) appeared in the compu-
tational electromagnetics community recently [16]. By 
now, the PSO of a multi-band CPW-fed monopole antenna 
was published [17] with the frequency domain moment 
method in the role of the computational tool. The multi-
objective version of PSO has not appeared in the open 
literature yet. 
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The single-objective versions of GA and PSO were 
confronted in [18] when applied to the phased array syn-
thesis. The comparison of multi-objective algorithms is 
published first here. 

The paper is organized as follows. In Section 2, the 
antenna to be synthesized is described. In Section 3, the 
techniques used (TDIE, GA, PSO) are briefly reviewed. 
Section 4 describes results obtained by computations, and 
confronts them with measurements. And finally, Section 5 
concludes the paper. 

2. Synthesized Antenna 
Abilities of the design technique combining the TDIE 

and multi-objective global optimization algorithms will be 
demonstrated on the synthesis of the double-band GPS an-
tenna. The antenna consists of the arbitrarily shaped wire 
monopole, which is completed by the planar reflector. Both 
the monopole and the reflector are assumed to be perfectly 
electrically conductive. The antenna is surrounded by the 
free space with the parameters of vacuum. 

The antenna will operate in the frequency bands L1 
(the central frequency fL1 = 1575.42 MHz) and L2 (the 
central frequency fL2 = 1227.6 MHz). The antenna is requi-
red to exhibit the omni-directional constant gain for the 
elevation from 5° to 90°. The antenna has to be designed 
for the right-hand circular polarization. 

The monopole is assumed to consist of N linear seg-
ments of lengths dln and the radius a (dln are much longer 
than a, and therefore, the thin-wire approximation can be 
applied in the TDIE). When synthesizing the shape of the 
antenna, we change local spherical coordinates ϕn, ϑn and 
lengths dln of all antenna segments. The origin of the local 
spherical coordinate system of the n-th antenna segment is 
located at the end of the (n–1) segment as depicted in Fig. 
1. Hence, N triplets [ϕn, ϑn, dln] are the result of the design. 

For the antenna optimization, three partial objective 
functions are formulated. The first one 
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is zero if the real part of input impedance Re{Zi} = 100 Ω 
and the imaginary part Im{Xi} = 0 Ω on central frequencies 
of both the frequency bands i = 1, 2. 

The second partial objective function 
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is zero in case if the maximum gain Gmax, i in any direction 
of elevation ϑ = <5°, 90°> and azimuth ϕ = <0°, 360°> 
equals to the minimum gain Gmin, i on central frequencies of 
both the frequency bands i = 1, 2. Hence, the omni-directi-
onal constant value of the antenna gain is reached. 

The third partial objective function formulates the 
criteria of the polarization purity: the ratio (Eϕ / Eϑ) has to 
equal one, and the phase shift between Eϕ and Eϑ has to be 
the odd multiple of π/2. If both the conditions are met on 
central frequencies of both the frequency bands, then the 
polarization purity objective function Fp is zero. 

The partial objective functions can be joined into the 
global objective function 

222
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Triplets [ϕn, ϑn, dln] are changed during the optimization to 
reach the minimum of the global objective function F. 

3. Techniques Used 
In this Section, we briefly review the time-domain 

integral-equation (TDIE) method we use for evaluating the 
objective functions in the optimization procedure. The ge-
netic algorithm (GA) and the particle swarm optimization 
(PSO) we use for minimizing objective functions are also 
briefly described here. 

3.1 Time Domain Integral Equations 
The method uses electric field integral equations [23] 

for the description of the analyzed structure. The equations 
are formulated for an arbitrary time response. Formulations 
are based on the retarded vector potential [22] 

( ) ( )[ ]ctt rrrJArA ′−−′= ,,  , (4) 

and the retarded scalar one [22] 

( ) ( )[ ]ctqVtV rrrr ′−−′= ,,  . (5) 

Here, r gives the observation point (potentials are compu-
ted here) and r’ is the source point (points out to current 
and charge sources contributing to potentials), |r – r’| is the 
distance between the observation point and the source one, 
and c is the velocity of light in a free space. The J repre-
sents the current density vector and q is the charge density. 
Currents and charges are joined by the continuity theorem, 
and the vector potential A and the scalar one V are used to 
evaluate the intensity of the scattered electric field [23]. 

In case of thin wire antennas, a so-called thin-wire 
approximation1 can be introduced, which decreases the 
dimension of the problem. Then, the antenna segments can 
be represented by their axes, the axes of segments can be 

                                                           
1 If the length of the antenna segment is much smaller 

than the radius of the antenna wire and much smaller 
than the wavelength, all the currents and charges on the 
antenna wire can be assumed to be concentrated on the 
axes of antenna segments. This assumption does not 
agree with the reality (due to the skin effect) but provi-
des results, which are close to measurements. 



RADIOENGINEERING, VOL. 14, NO. 4, DECEMBER 2005 93 

broken into one-dimensional (1D) discretization cells, and 
the current distribution can be approximated over discreti-
zation cells using piecewise constant basis functions (on 
the discretization cell, the current is the same for all the 
points of the cell, but it can change in time). 

Performing several mathematical operations, an expli-
cit formula for the current on the m-th discretization cell in 
the k-th time step can be obtained [22] 
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where κ( m, n) denotes the integral of the time-domain 
Green function over the n-th discretization cell for the m-th 
observation point [22], At( m, k) is the contribution of the 
upcoming current samples (the moment k) to the vector 
potential in the centre of the m-th discretization cell, and 
A1( m, k) is the contribution of former current samples (the 
moments k–1, k–2, ...) to the vector potential in the centre 
of the m-th discretization cell, and A0( m, k) = A1( m, k–1) – 
– At( m, k–1) [22]. Next, c denotes velocity of light, ∆t is 
the time step (the discretization segment in time), and ∆ de-
notes the length of the spatial discretization segment [22]. 
Finally, the term 
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describes the excitation (EI is the electric field intensity of 
the incident wave). In our computations, antennas are exci-
ted by Gaussian pulse of the width 0.25 LM2. Then, anten-
na parameters in both the frequency bands L1 and L2 can 
be obtained within a single analysis. 

The explicit formula is stable for the time step shorter 
than ∆t ≤ Rmin / c (the minimum distance between the cen-
ters of the discretization cells Rmin is longer than the distan-
ce covered by light within one time step of the algorithm 
∆t). Meeting this condition, TDIE becomes an efficient and 
accurate computational tool for evaluating cost functions in 
our optimization. 

3.2 Genetic Algorithms 
Genetic algorithms (GA) understand the optimized 

antenna like an individual, which properties are described 
by a gene [8]. Therefore, all the state variables of the an-
tenna, which are changed during the optimization, are bina-
ry encoded and sequentially put into a binary array – gene. 

                                                           
2 The light meter (LM) equals to the time needed for co-

vering one meter by an electromagnetic wave in free 
space. 

In order to improve the antenna parameters, a popula-
tion of individuals (antennas) is randomly generated (i.e., 
a set of optimized antennas differing in the setting of their 
state variables is created). Then, each individual in the po-
pulation is evaluated (the objective function is computed 
for each antenna) and the best ones are selected to become 
parents. Couples of parents are then randomly selected [8]. 

The cross-over operation randomly divides genes of 
parents (a sequence of binary encoded state variables), and 
forms two children (the gene of the first child contains the 
first part of the first parent gene and the second part of the 
second parent gene and vice versa). That way, the popula-
tion of parents is replaced by a population of children, 
which should exhibit better properties [8]. 

In case of our antenna, the gene is composed of three 
parts: the first one contains the binary-coded elevation an-
gles ϑn (10 bits), the second one the binary coded azimuth 
angles ϕn (10 bits), and the third one the binary coded 
number of the discretization elements ∆ (3 to 6) forming 
antenna segments dln. The antenna consists of 7 segments. 

Initially, 32 binary genes were randomly generated to 
form the population, 32 antennas were analyzed using 
TDIE, and the best of them (the lowest value of the global 
objective function) were selected to become parents. 

iterations

F
tot

 
Fig. 2. Genetic optimization of the antenna. Comparison of dif-

ferent selection strategies: population decimation (solid), 
tournament selection (dashed), proportional selection (dash-
dotted). 

In our experiments, 3 selection strategies were tested. Po-
pulation decimation selects 50 % of the best individuals to 
be parents (therefore, 64 individuals form the initial popu-
lation in that case), and in the following steps, the better 
half generation overwrites the worse one. Tournament se-
lection randomly selects couples, and the better individual 
in the couple is allowed to be a parent. In case of propor-
tional selection, probability of the individual to become a 
parent is related to the value of its objective function (lo-
wer the objective function is, higher the probability is) [8]. 

We also applied 10 % mutation (10 % probability that 
one bit randomly selected in a gene will be inverted). 
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Fig. 2 compares convergence properties of all the 3 
selection strategies. The convergence curves were averaged 
over 5 realizations of the optimization. The optimization 
was stopped in the 100th iteration. Since the tournament 
selection exhibited the best properties, we used it in the 
following computations. 

3.3 Particle Swarm Optimization 
The particle swarm optimization (PSO) is a stochastic 

evolutionary computation technique based on the move-
ment and intelligence of swarms [16]. Speaking about the 
swarm of bees, its intention is to find the best flowers in a 
given (feasible) space. Applying this concept to the optimi-
zation of the GPS antenna, the bees (agents) move in a 
space formed by N triplets [ϕn, ϑn, dln], each bee is descri-
bed by its coordinates, its velocity of movement to the best 
flowers, and its value of the objective function. Each bee 
remembers the position of the lowest value of the objective 
function (so called local minim) it reached during its fly. 
The lowest local minim (through the whole swarm) is cal-
led the global minim. The position of the global minim and 
the local one are used to determine an optimal velocity vec-
tor (direction and speed of flight) of the bee to the area of 
best flowers [16] 

( ) ( )nbestnbestnn rwrww xGxLvv −+−+=+ 22111 . (8) 

The velocity in the (n+1) iteration step vn+1 equals to the 
velocity in the previous iteration multiplied by a weighting 
factor w (how quickly is the speed vn forgotten), Lbest is the 
position of the local minim and Gbest of the global one, xn 
denotes the position of the bee in the n-th iteration step, w1 
and w2 are again weighting factors, r1 and r2 are random 
numbers from 0 to 1. 

When a new velocity vector of a bee is known, its 
new position can be computed [16] 

11 ++ ∆+= nnn t vxx  , (9) 

where ∆t is the time period the bee flies by the velocity vn+1 
(usually 1 second). 

In case the bee reaches the border of the feasible spa-
ce, the velocity vector can be reflected (orientation of the 
velocity vector is reverted, and the bee returns to the fe-
asible space), absorbed (magnitude of the velocity vector is 
set to zero, and the position of the bee does not change), or 
ignored (the bee stays out of the feasible space, its objecti-
ve function is not evaluated, and the bee is expected to co-
me back to the feasible space within a few iteration steps). 

At the beginning of the optimization, 50 agents were 
randomly generated. Each agent was described by N (se-
ven) triplets of rational coordinates: ϕn is azimuth, ϑn is 
elevation, and dln is the length of the antenna element ex-
pressed in the number of antenna segments. For each agent, 
objective function was evaluated, Lbest and Gbest were com-
puted, and its velocity was randomly given. Then, a new 
velocity could be determined using (8), and a new position 

could be evaluated using (9). This procedure was repeated 
100 times in our case. 

4. Results 
In this Section, we are going to present results of the 

synthesis of the GPS antenna described in Section 2. The 
antenna consists of a monopole, which is composed of 7 
elements. Each element is described by the azimuth angle 
ϕn, the elevation angle ϑn, and the length given by the 
number of discretization segments dln = p ∆, where p = 3 to 
6. The monopole is completed by the infinite planar reflec-
tor. The radius of the antenna wire is fixed to a = 1 mm. 

a)

iterations
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b)

iterations
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Fig. 3. Time responses of partial objective functions Ff (mat-

ching), Fg (gain), Fp (polarization), and the global one Ftot 
during the multi-objective optimization of the GPS antenna: 
a) genetic algorithm, b) particle swarm optimization. 

The described antenna is numerically analyzed by TDIE. 
Computed time responses of currents on discretization seg-
ments of the antenna are converted to frequency domain 
using fast Fourier transform. In frequency domain, criteria 
on matching, gain and polarization purity are formulated. 

The global objective function (3) is minimized using 
GA and PSO. Both the algorithms are allowed to perform 
100 iteration steps. Both the algorithms are run five times, 
and the best realization is considered in comparisons. 
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a)

 
b)

 
Fig. 4. The movement of individuals (agents) to the global opti-

mum [Ff, Fg, Fp] = [ 0, 0, 0]: a) genetic algorithms, b) particle 
swarm optimization. 

a)

 
b)

 
Fig. 5. Shape of the synthesized GPS antennas: a) the best indi-

vidual by genetic algorithm, b) the best agent by particle 
swarm optimization. 

In Fig. 3, time responses of partial objective functions and 
the global one during the optimization of GPS antenna are 
depicted. Time response of PSO is smoother and reaches a 

deeper global minim (208.58 versus 227.28) compared to 
GA. Whereas the global objective function decreases mo-
notonously, partial objective functions can both decrease 
and increase during the optimization. Partial objective fun-
ctions should be of similar values to optimize successfully 
– hence the gain function Fg and the polarization function 
Fp should be enhanced by weighting coefficients up to the 
level of the matching function Ff. 
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Fig. 6. Impedance characteristics of the synthesized GPS anten-

nas: a) genetic algorithm, b) particle swarm optimization. 

Fig. 4 shows the position of individuals (agents) in the co-
ordinate system composed of partial objective functions Ff, 
Fg and Fp. The global optimum is identical with the point 
[0, 0, 0] in this coordinate system (the antenna perfectly 
meets requirements on matching, gain, and polarization 
purity). Agents of PSO are highly concentrated close to the 
global optimum; individuals of GA are more spread in the 
feasible space. Agents of PSO are closer to the global opti-
mum compared to the individuals of GA. 

In Fig. 5, the synthesized monopoles (the best indivi-
dual by GA and the best agent by PSO) are depicted. 

Impedance characteristic of the antennas are shown in 
Fig. 6. The GA antenna is accurately matched in both the 
bands, and moreover, the impedance characteristics are 
smooth without parasitic resonances. On the contrary, the 
PSO antenna is matched on slightly lower frequency in the 
lower band, and moreover, the frequency response of input 
impedance is corrupted by several resonances in between 
bands L2 and L1. 
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a)

b)

 
Fig. 7. Directivity pattern of the designed antenna in the band 

L1: a) genetic algorithm, b) particle swarm optimization. 

a)

b)

 
Fig. 8. Directivity pattern of the designed antenna in the band 

L2: a) genetic algorithm, b) particle swarm optimization. 

Directivity patterns of the synthesized GPS antennas are 
depicted in Fig. 7 for the L1 band and in Fig 8 for the L2 
band. In both bands, the PSO antenna meets better the re-
quirement on the constant gain for all directions. 

The matching criteria were also verified experimen-
tally (see Fig. 9). The GA antenna exhibits the first minim 
of the reflection coefficient on 1248.5 MHz (the declina-
tion +2 %) and the second minim on 1521.5 MHz (the dec-
lination –4 %). Both minims are about –10 dB. 

The PSO antenna exhibits the first minim of the ref-
lection coefficient on 1240.4 MHz (the declination +1 %) 
and the second minim on 1520.9 MHz (the declination –4 
per cent). Both minims are about –10 dB. 

 

 
Fig. 9. Measured frequency response of the reflection coeffi-

cient of the designed antennas: genetic algorithm (top), par-
ticle swarm optimization (bottom). 

Measurements did not show any differences between the 
GA antenna and the PSO one from the viewpoint of impe-
dance matching. 

5. Conclusions 
Our experience with the synthesis of wire antennas 

combining TDIE in the role of the computational tool plus 
GA and PSO as global optimizers can be concentrated into 
the following statements: 

• Both GA and PSO provide similar results of the syn-
thesis. The synthesized antennas meet quite well the 
requirements. Weaknesses and advantages of solu-
tions are both on the side of GA (better impedance 
characteristics, worse patterns) and PSO (better direc-
tivity patterns, worse characteristics). 

• Software implementation of PSO is simpler compared 
to GA: no coding and decoding of state variables is 
needed in case of PSO. 

• CPU-time demands of both PSO and GA are similar. 
The biggest portion of CPU time is consumed by eva-
luating directivity patterns (92 %). TDIE analysis is 
quite efficient (6 % of the total CPU time). 

The further development should be focused in the post-pro-
cessing of the TDIE results to reduce the 92 per cent por-
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tion of the total CPU time consumed to the lower value. 
Formulating objective functions directly in the time domain 
might be one of possible solutions. 
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