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Abstract. Refraction phenomena that occur in the lower 
atmosphere significantly influence the performance of 
wireless communication systems. This paper provides an 
overview of corresponding computational methods. Basic 
properties of the lower atmosphere are mentioned. Practi-
cal guidelines for radiowave propagation modeling in the 
lower atmosphere using ray-tracing and parabolic equa-
tion methods are given. In addition, a calculation of angle-
of-arrival spectra is introduced for multipath propagation 
simulations. 
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1. Introduction 
Long-range electromagnetic wave propagation in 

near-horizon direction is largely governed by spatial distri-
bution of the refractive index in the atmosphere. Con-
sideration of refractive properties of the lower atmosphere 
is thus of certain importance when planning and designing 
terrestrial communication systems mainly because of mul-
tipath fading and interference effects due to trans-horizon 
propagation. Multipath phenomena can also be used for 
remote sensing applications. 

Recent propagation modeling methods considering 
the refractive properties of the atmosphere employ ray-
tracing and parabolic equation approach. Ray-tracing is a 
geometrical optics method while the parabolic equation 
method is a full-wave approach to a homogeneous wave 
equation solution. Both methods have been known for 
many years, but new applications place new requirements 
on their implementation: multipath phenomena precise 
modeling, horizontally inhomogeneous troposphere, etc.  

This paper provides a basic description of methods 
used in radiowave propagation prediction, taking into ac-
count the refractive conditions of atmosphere. Ray-tracing 
and parabolic equation methods as the most widely used 
techniques are addressed including implementation issues. 
Practical guidelines are given to enable the selection of a 

proper method and its implementation for a specific appli-
cation. At the end a method for angle-of-arrival spectra 
calculation is presented for precise multipath propagation 
simulations. 

2. Radio Refractive Index 
The troposphere forms the lowest part of the atmo-

sphere from the surface of the earth up to several km. From 
the propagation point of view, the troposphere is charac-
terized by a refractive index, whereas the rate of the change 
of the refractive index with height is of crucial importance. 
The refractive index itself depends on absolute tempera-
ture, atmospheric pressure and partial pressure due to water 
vapor [1]. The predominant dependence of these quantities 
on elevation makes the troposphere a mostly horizontally 
stratified media. The refractive properties of air can be 
expressed in terms of the refractive index n or refractivity 
N, where  

610)1( ⋅−= nN . (1) 

The refractive index of air at the surface of the earth is 
approximately 1.0003. Standard atmosphere is represented 
by an approximately linear decrease of refractivity at low 
altitudes with a long-term mean value of the refractivity 
gradient equal to –40 N/km, [2], [3]. Radiowaves are bent 
in consequence of a non-constant refractive index. The 
effect of the refractivity gradient to wave bending can be 
expressed using the radius of curvature of a ray repre-
senting the electromagnetic wave. The radius of curvature 
ρ of the ray can be well approximated by [4] 

dzdn
1

−=ρ . (2) 

The radius of the earth curvature is ρe = 6378 km. The 
radius of the curvature of the ray under standard gradient is 
higher than the radius of the earth curvature; both radiuses 
are equal for dN/dz = -157 N/km. The definition of 
modified refractivity and modified refractive index comes 
from 

zNM 157+= ,  610)1( ⋅−= mM                                (3) 

where M and m are modified refractivity and modified 
refractive index, respectively, and z is height in km.  
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The effects of various refractivity gradients can be 
seen in Fig. 1, where bending of rays representing radio 
waves is shown relative to earth curvature. The rays propa-
gating under positive refractivity gradients are bent up-
wards. The standard refractivity gradient causes rays to 
bend downwards, but the curvature of the earth (1/ρe) ex-
ceeds the curvature of the ray (1/ρ), which prevents trans-
horizon propagation and creates a shadow area behind the 
radio horizon range. Ray propagating under a refractivity 
gradient equal to dN/dz = -157 N/km is exactly parallel to 
the surface of the earth. Gradients of less than –157 N/km 
produce ducting where the curvature of the rays exceeds 
the curvature of the earth and the wave travels for a very 
long distance behind the radio horizon.  

dN/dh=-40 N/km
 dM/dh=117 M/km

    dN/dh=-157 N/km
dM/dh=0 M/km

dN/dh>0

dN/dh<-157 N/km

 
Fig. 1. Rays under various refractivity gradients. 

Basically, there are two effects that can break the standard 
situation of the constant gradient of refractivity. The first is 
an abrupt decrease of water vapor pressure with height, 
which occurs mostly in a narrow layer over water surface 
and results in a so called evaporation duct, Fig. 2(a). The 
other is an inverse increase of temperature with height 
causing a surface or elevated duct, Fig. 2(b,c). Range of 
heights of the ducting layer is determined by the top of 
negative M gradient layer and height of equal M below [5].  
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Fig. 2. Types of ducts. 

3. Geometrical Optics 
Geometrical optics is a method suitable for the treat-

ment of propagation problems in homogenous media or in 
slowly varying media compared to wavelength. The propa-
gating field is locally considered a plane wave represented 
by rays. Rays form trajectories perpendicular to the wave 

front at each point. Considering a high frequency harmonic 
field in inhomogeneous media and assuming small varia-
tions of field intensity amplitude compared to wavelength 
(large wavenumber k0) leads to the following pair of equa-
tions determining the ray trajectory in two dimensions [6] 
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where only the dependence of refractive index on height z 
is considered and where s represents the length of the arc 
of the ray and x denotes the horizontal distance. The left 
term of the first equation equals to zero causing the 
bracketed term to be constant 

( ) Czn
ds
dxzn == θcos)(  (5) 

where C is a constant and θ is the angle of the ray from 
horizontal direction. Eq.(5) represents Snell’s law. Con-
sidering the piece-wise linear profile in Fig. 3(a), the de-
pendence of the refractive index in the horizontal segment 
is in the form 

( )1212 zznn −+= δ   (6a) 

where δ is the refractive index gradient. Inserting (6a) into 
Snell’s law, the following set of equations determining the 
trajectory of the ray in one of the linear segments can be 
derived [7] 

( ) δαα 1212 −+= xx   (6b) 
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Fig. 3. Refractive index profile and bending of a ray 

Eq. (6b) represents the dependence of x on the respective 
angle α2, which is in turn determined by the initial angle α1 
(6c). If the turn-around point of the ray exists within one 
layer as in Fig. 3(b), the two particular paths of the ray 
have to be treated separately. Possible ground reflections of 
the ray have to be considered. 

In the formulas above, a rectangular coordinate sys-
tem rather than a spherical one was considered. To be able 
to work with the flat earth model, the refractive index n has 
to be replaced by a modified refractive index m [7]. Fig. 4 
shows the case of a standard atmosphere. Ray paths ob-
tained using (6a-c) are shown with the rays bent upwards 
under earth flattening transformation. Fig. 5 shows an 
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example of a refractivity profile with the ducting layer 
extending from 50 to 70 m. The tropospheric waveguide 
effect causing the wave to travel far beyond the horizon 
can be seen.  

Although ray-tracing provides a rather simple tool for 
finding the path of individual rays, problems may arise 
when treating diffraction effects caused by terrain irregu-
larity and earth curvature. In such a case the principles of 
diffraction theory must be employed. Furthermore, a single 
ray carries no amplitude information, and amplitude is 
derived from the cross section of a tube of rays formed by 
several rays. In addition, geometrical optics does not pro-
vide correct results at a ray caustic, i.e. at a locus of zero 
cross-section of the ray tube. 

 
Fig. 4. Ray paths under a standard refractivity profile. 

 
Fig. 5. Ray paths in presence of ducting layer. 

In the next section, a description of an alternative approach 
to the solution of radiowave propagation modeling based 
on the full-wave solution of a reduced wave equation is 
presented. 

4. Parabolic Equation 
Because of the large computation domains involved 

in radiowave propagation modeling in the troposphere, it is 
usually impossible to solve Maxwell’s equations or wave 
equation directly. Alternative approaches must be utilized 
to obtain the solution in reasonable time. Considering the 

received power prediction in a terrestrial point-to-point 
radio link, radar-cross-section computation and other re-
lated propagation problems, the area of interest is within 
several degrees of the preferred direction. In such a case a 
reduced wave equation of the parabolic type can be han-
dled to obtain a computationally effective solution.  

A two-dimensional scalar wave equation in the 
Cartesian coordinate system can be written as 
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where ψ is the electric or magnetic field component, k0 is 
the wavenumber in a vacuum, n is the refractive index, x 
and z denote the axes representing distance and height, 
respectively. Considering the solution to (7) in the form of 

xjkezxuzx 0),(),( −⋅=ψ   (8) 

where x represents the predominant direction of 
propagation and inserting it to (7) the results is 
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Eq. (9) can be formally written as 
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representing a forward and backward traveling wave, 
where 2222

0 )1( nzkQ +∂∂= . Considering only the 

forward traveling wave, we obtain 

( ) uQjk
x
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∂
∂ 110

  (11) 

where 1)1( 2222
0 −+∂∂=′ nzkQ . Inserting the two-terms 

Taylor approximation  

211 QQ ′+≈′+   (12) 

in (11) provides the parabolic equation 
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The parabolic equation approach to solve propagation 
problems is suitable for cases of long-range propagation 
under narrow propagation angles. Compared to the ray-
tracing technique it provides an efficient tool for solving 
problems including both terrain diffraction and refraction 
phenomena. The two implementations that are used to 
numerically solve (13) based on finite differences and 
Fourier transform are briefly described in the next sections. 

4.1 Finite-Difference Implementation 
Eq. (13) is solved numerically by the Crank-Nicolson 

schema using a rectangular grid, Fig. 6. The differentia-
tions in (13) are expressed as: 
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The computation is performed by steps: a field on a vertical 
in the next step, denoted by i+1 subscript is computed from 
the field in the previous step i with given boundary condi-
tions at the bottom and top of the computational domain 
and with given field distribution at the initial vertical plane. 

Inserting the above equations in (13) and rearranging 
the i and i+1 terms gives 
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where  
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∆x and ∆z are step sizes in horizontal and vertical 
directions respectively, n represents the vector of refractive 
index height dependence at a given range. Eq. (15) can be 
written in matrix form as 
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The resulting field in the next step ui+1 is obtained by 
matrix inversion of (17). Because of the rectangular grid 
modified refractive index m must be used instead of the 
refractive index n to account for the earth curvature.  
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Fig. 6. Discretisation finite-difference grid. 

4.2 Fourier Transform Implementation 
Defining Fourier transform of the function u(x,z) as 

{ } ∫
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−== dzezxuzxupxU jpz),(),(F),(   (20) 

and making use of the identities 
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eq. (13) can be Fourier-transformed as 
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The solution to this differential equation can be obtained in 
closed form 
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),( xnjkkxjp eepxU −−⋅= . (23) 

The field on the vertical in the next step is then obtained 
from field values in the previous step as 

{ }{ }),(FF),( 0
22

0 212)1( zxueezxxu kxjpxnjk ⋅⋅=∆+ ∆−∆−−   (24) 

and the computation is marched in horizontal direction in 
the same way as in the case of finite-differences. Fourier 
transform of a plane wave of unit amplitude propagating in 
a vacuum at angle θ is 

{ } ( )θδθθθ sinF 0
cossincos 000 kpeee xjkzjkxjk −=⋅   (25) 

where δ is a Dirac function. The variable p = k0 sin(θ) has 
the meaning of an angle frequency corresponding to a 
wave traveling at the angle θ. When employing Fast Fou-
rier Transform for marching (24), the maximum angle of 
propagation θmax must be chosen. The vertical spacing of 
the computation grid ∆z must be chosen accordingly 
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)sin( max0max θππ kpz =≤∆ .  (26) 

Radiation pattern of transmitting antenna can be in-
corporated into the parabolic equation model by setting an 
appropriate field distribution of the initial vertical plane. 
Supposing the radiation pattern is P(p) where p = k0 sin(θ) 
and θ is an angle, the initial field is 

{ })(F)( 1
eppPzf −= −   (27) 

where pe is the angle frequency corresponding to the ele-
vation angle of the antenna θe, f(z) is the field distribution 
of the initial vertical corresponding to zero height of the 
transmitter. The field distribution corresponding to antenna 
at height zh is obtained by the appropriate shifting of f(z) 

)(),0( hzzfzu −= .  (28) 

Parabolic equation results in form of relative received 
power (dB) were obtained using Fourier transform imple-
mentation considering horizontal polarization, frequency 
10 GHz and perfectly conducting ground. The horizontal 
step was 200 m. Fig 7. shows the situation of a standard 
atmosphere corresponding to the ray-tracing result in Fig. 
4. An identical depiction with earth curvature shown is in 
Fig. 8. 

 
Fig. 7. Relative received power (dB), flat earth. 

 
Fig. 8. Relative received power (dB), earth’s curvature depicted. 

4.3 Implementation Issues 
In the tropospheric propagation modeling the need for 

numerical efficient algorithms is of crucial importance. 
Fourier transform based algorithms allow larger range 
steps than the finite-difference methods and they are com-
putationally more effective. The range step for finite-dif-
ferences is 10-100 wavelengths. A Fourier transform im-
plementation range step can be up to 900 m and 270 m for 
lower and higher frequencies, respectively [8]. Terrain 
profile can be easily incorporated in the following way: the 
field on the vertical in the next step is computed con-
sidering no presence of the terrain. Grid points at the bot-
tom of the discretisation grid corresponding to the terrain 
height at the given range are then set to zero. This ap-
proach allows only staircase approximation of the terrain. 
More precise terrain modeling is also possible [7]. Matrices 
(16) are valid for a perfectly conducting flat earth surface. 
Reflections from the surface represented by permittivity 
and conductivity at a lower boundary can be implemented 
by direct inserting of a Leontovich boundary condition into 
the first line in of matrix A and B in (16). A mixed Fourier 
transform [9], [10] is used to model impedance boundary 
when using Fourier transform implementation. To prevent 
reflections from the upper boundary the field must be 
gradually attenuated towards the top of the grid. Usually 
a Hanning window is used to create the attenuation layer. 

Although the Fourier transform approach can not be 
used in the general case of more complicated boundaries, 
where finite-difference method must be used, this usually 
causes no problems in long-range propagation modeling 
where usually only the air-earth boundary is considered. 

5. Angle-of-Arrival 
One of the factors limiting the performance of line-of-

sight communication systems is multipath propagation 
occurrence. The multipath is derived from two basic 
mechanisms, namely ground reflection and atmospheric 
refraction. One way to detect a multipath is by angle-of-
arrival measurement. The angle-of-arrival spectrum has a 
meaning of directions from which the wave arrives at the 
receiving point of the link. It represents an angular spec-
trum of plane waves hitting the aperture of the receiving 
antenna. The concept of the angle-of-arrival measurement 
is described in [11]. From ray-tracing the angles of rays are 
obtained directly by the means described in Sec. 3. When 
performing a parabolic equation simulation, the angle-of-
arrival spectrum is computed by the method described 
below.  

Consider two plane waves carrying amplitudes a1 and 
a2 arriving at a vertical antenna array as shown in Fig. 9 
with the geometry shown in Fig. 10. 
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Fig. 9. Two plane waves arriving at an antenna array. 
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Fig. 10. Plane wave geometry. 

Setting the phase Φ at the lowest element of the antenna 
array to zero, the received field at the individual elements 
can be expressed as 
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The spacing between the elements of the array is z, θ1 and 
θ2 are the respective angles of incidence of the plane 
waves. Vector r forms the sampled sum of harmonic func-
tions. The Fourier transform of this vector represents an 
angular spectrum of incident plane waves with spectral 
lines at angles θ1 and θ2. To fulfill the sampling theorem 
the spacing must be 

( )maxsin2 θλ≤z   (30) 

where θmax is the maximum angle of incidence which is 
usually bounded below one degree in the long-range tropo-
spheric propagation case.  

To demonstrate the relation between fading and mul-
tipath, see the height dependence of the relative received 
power (dB) at a distance of 30 km from the 10 GHz trans-
mitter at a height of 25 m for a standard atmosphere in 
Fig.11 obtained using the parabolic equation. 

 
Fig. 11. Height dependence of relative received power. 

The minima in Fig. 11 are caused by phase summation of 
the direct and ground-reflected wave. Corresponding nor-
malized angle-of-arrival spectra computed from the simu-
lated values and using a Dolph-Tschebyscheff filter to 
reduce sidelobes are shown in Fig. 12. 

 
Fig. 12. Angle-of-arrival spectra. 

The solid and dotted lines represent angle-of-arrival spectra 
corresponding to a 10-element vertical antenna array aper-
ture extending from 25 m to 34 m and from 41 m to 50 m, 
respectively. It can be seen that two peaks corresponding to 
direct and ground reflected wave exist in the latter case, 
giving rise to the minimum of the received power in the 
respective range of heights, see Fig. 11.  

6. Conclusion 
Prospective wireless communication systems require 

precise radiowave propagation modeling in the tropo-
sphere. The advancement of computers allows new ap-
proaches to the implementation of classical modeling 
methods to satisfy new demands on precise propagation 
prediction. This paper provided the corresponding basic 
computational tools and guidelines. The method of com-
putation of angle-of-arrival spectra from simulation results 
obtained by parabolic equation method was introduced. As 
an example, the multipath phenomena modeling can be 
used for remote sensing of the refractivity height profiles in 
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the troposphere [12]. Recently, great attention has also 
been given to refractivity profile measurement, so new 
requirements for radiowave propagating modeling in the 
troposphere can be expected in the near future. 
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