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Abstract. In the paper the relation is given between linear 
difference equations with constant coefficients those ob-
tained via the application of forward and backward diffe-
rences. Relation is also established between input-output 
difference equations and state-space difference equations, 
which define the state of inner quantities of a discrete sys-
tem. In conclusion, the state-space representation of a dis-
crete system is given, which is suitable for implementing a 
discrete system in the microprocessor and digital signal 
processor. The resultant solution consists of the response 
to input signal and the response to non-zero initial condi-
tions. 
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1. Introduction 
Difference equations that represent algorithms for the 

digital signal processing can be expressed in several ways. 
In the field of digital signal processing, in particular in 
digital filters, the representation using the backward diffe-
rence is mostly used [6], [7], [8]. In mathematics and in the 
field of informatics and automatic control, difference equa-
tions with forward differences are used [1], [2], [3], [4]. 
Difference equations can further be divided into space-state 
difference equations [2], [3], [4], [12], and [13] and input-
output difference equations [1], [7], [8]. Each of these four 
types of difference equation uses a different method of pro-
gramming algorithms. An incorrectly chosen type of algo-
rithm can then often lead to errors when implementing the 
algorithm, in particular in the case of fixed-point digital 
signal processors. For a graphical representation of diffe-
rence equations both block diagrams and signal flow 
graphs can be used [2, 3, 4, and 7]. In addition to the clas-
sical mathematical analysis [1] the Z-transform is frequent-
ly used [5, 6] to solve difference equations. In reverse 
examination of the transfer function implemented in the Z-
transform, Mason’s gain rule can be used for the calcu-

lation of graph transfer from the chosen input node to the 
output node [7]. The computer analysis of the realization 
structures of discrete systems is performed much the same 
as with the method of nodal voltages in analog circuits and 
systems, and is of fundamental significance in the analysis 
of the properties of discrete systems [10, 11]. To make full 
use of all the knowledge obtained so far by applying diffe-
rence equations in the representation of discrete systems it 
is necessary to put the different notations of difference 
equations and their derived functions into a correct mutual 
relationship. 

2. Difference Equations with Forward 
and Backward Differences 
In mathematics the term difference equations refers to 

equations in which in addition to the argument and the 
sought function of this argument there are also their diffe-
rences. The difference equation can be understood as the 
function: 

[ ] [ ]( ) .1 nyfny =+  (1) 

Function differences were first defined as approximations 
of function derivatives since for an n-th continuous deriva-
tive of function f(x) at point x it holds: 
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If we consider a uniform (equidistant) distribution of the 
values of independent variable x, we can successively mo-
dify the function difference to the form: 

[ ] [ ] [ ] .1 nfnfnf −+=Δ  (3) 

This equation defines the so-called forward difference. In 
this way, the backward difference equation of the first or-
der can also be defined: 

[ ] [ ] [ ] .1−−=Δ nfnfnfz  (4) 

The properties of continuous systems are mostly described 
using the differential equations. Similarly, the properties of 
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discrete systems can be defined using the difference equa-
tions. Consider first a linear stationary discrete system of 
the s-th order whose properties can be represented by a 
linear difference equation of the s-th order with constant 
coefficients [1], [8]: 
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The constants B0, B1,  …  , Bs and A0, A1,  …  , As are the 
difference equation coefficients, the discrete signal x[n] 
represents the input signal of discrete system, and y[n] is 
the output signal of discrete system. As can be seen, diffe-
rence equation (5) describes the properties of a discrete 
system with one input and one output. If the discrete sys-
tem has several inputs and several outputs, difference equ-
ations must be set up for each input and each output. It is 
then of advantage to use the matrix notation for a group of 
these difference equations. To obtain an analytical solution 
of equation (5) we need to know the initial conditions  

[ ] [ ] [ ] [ ] [ ]0,0,,0,0,0 321 yyyyy sss ΔΔΔΔ −−− L  . 

If we use the forward difference according to (3) to rewrite 
equation (5), then the general relation for s-th order diffe-
rence can be used: 
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Using equation (6) we can obtain from rewritten equation 
(5) the following form: 
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This difference equation will be referred to as non-homo-
geneous linear difference equation of the s-th order with 
constant coefficients ai, bi, i = 0, 1, ..., s–1, s. This type of 
difference equation is sometimes referred to as recurrent 
equation of the s-th order, because we can write: 
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The complete solution of non-homogeneous equation (7) 
consists of two parts: 

[ ] [ ] [ ] .ph nynyny +=  (9) 

The general solution yh[n] of homogeneous difference equ-
ation will be obtained by solving equation (7) with zero 
right-hand side under non-zero initial conditions: 

[ ] [ ] [ ] [ ] .0,1,,2,1 yysysy L−−  (10) 

The particular solution of yp[n] depends on the form of the 
right-hand side of equation (7). The analytical solution is a 
complete solution but it is often very difficult. Analytical 
solution for different types of difference equations is des-
cribed, for example, in [1]. For practical tasks of digital 
signal processing there are certain limitations, and for the 
solution the one-sided Z-transform is used [5], [6], [7]: 
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In the solution of difference equation (7) via the Z-trans-
form in the form of (11) the following property of the 
transform is exploited: 
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Using the Z-transform in the form of (11) and property (12) 
will yield equation (7) in the form: 
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where Y(z) is the one-sided Z-transform of output signal 
y[n], or y[n] ⇔ Y(z), and X(z) is the one-sided Z-transform 
of output signal x[n], or x[n] ⇔ X(z). The polynomials F(z) 
and G(z) are defined as follows: 
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In [14] a comparison is given of the analytical solution and 
the solution using the Z-transform for 2nd-order non-homo-
geneous equation, which has the form: 
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The input signal considered is unity impulse x[n] = δ[n]. 
The function H(z) in equation (13) is called the system 
transfer function of discrete system and is defined as: 
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Linear stationary (time-invariant) discrete dynamic systems 
also embrace the IIR and FIR digital filters. In their design 
the transfer function H(z) is mostly started from, which is 
written in a form other than (15): 
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If we compare equations (15) and (16), we can see the con-
nection: 
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Using different methods of digital filter design (bilinear 
transformation, the Remez algorithm, etc.) the coefficients 
ai, bi, i = 0, 1, 2, ... , s  (or ci, di) are sought such that the 
requirements, for example, of the tolerance diagram for the 
width and placement of pass, stop and transition frequency 
bands of digital filter are satisfied [7], [8]. Now we are in-
terested in what form of difference equation corresponds to 
a procedure that starts directly from transfer function (16). 

We calculate the difference equation from the equation in 
the Z-transform, which forms only a part of equation (13): 

( ) ( ) ( ) .zXzHzY =  (18) 

After substituting transfer function (16) into equation (18), 
using the inverse Z-transform and rewriting we obtain the 
difference equation: 

[ ] [ ] [ ]
[ ] [ ] [ ]

[ ] [ ] [ ]
[ ] [ ] [ ] .12

21
12

21

12

210

12

21

snxcsnxcsnxc
nxcnxcnxc

snydsnydsnyd
nydnydny

sss

sss

−++−++−+
+−+−+=

=−++−++−+
+−+−+

−−

−−

L

L

 (19) 

or after substituting coefficients ai and bi: 
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The recurrent equation can again be obtained via rewriting: 
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The complete solution of non-homogeneous equation in the 
form of (20) or (21) will be obtained on the assumption 
that we know the initial conditions: 

[ ] [ ] [ ] [ ] .,1,,2,1 sysyyy −+−−− L  (22) 

As can be seen, we obtain the form of linear difference 
equations with backward differences (4), which is com-
monly used in digital filter theory. 

Conclusion No. 1: If we start from a linear non-ho-
mogeneous difference equation with constant coefficients 
in the form of (5), then after substituting forward and back-
ward differences according to (3) or (4) we obtain equiva-
lent difference equations in the form of (7) and (8) or (20) 
and (21). We can see that we are concerned here with an 
equivalent form if we apply the substitution n = m + s to 
equation (20) or (21). It should be noted that this equiva-
lence only concerns linear difference equations with cons-
tant coefficients. This equivalence does not hold for non-
linear difference equations or linear difference equations 
with varying coefficients. 
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3. State-Space Difference Equations 
and Input-Output Difference 
Equations 
Non-homogeneous difference equations in the form 

of (5), (7) or (8) only express the relation between input 
signal x[n] and output signal y[n] of a discrete system (or 
between the input and the output signals for a system with 
several inputs and outputs, in which case a group of diffe-
rence equations is used). The form of input-output diffe-
rence equation is not very suitable for writing algorithms 
because it is difficult to determine the value of initial con-
ditions. As can be seen from conditions (10) and (22), we 
must determine s initial values of output signal y[n], which 
are distributed in time and thus influence the rate of pro-
cessing the input signal by the discrete system. Of greater 
advantage would be the requirement of initial values defi-
ned for one instant of time, which appears in the solution 
of difference equation (5). In mathematics, of course, it is 
not customary to do an analysis of difference equations in 
the form of (5); in most cases, difference equations in the 
form of (7) or (8) are solved. It would be more convenient 
if we introduced a model of the discrete system with inner 
variables. This model is then referred to as state-space 
model because it will give the values of inner state-space 
variables at one instant of time. Let us show a very simple 
method of deriving the inner state-space description. We 
will successively put together differently shifted input and 
output signals: 
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We have obtained a group of new state-space variables 
vi[n], i = 1, 2, 3, ... , s . Formally we can also write a diffe-
rence equation that is in agreement with equation (7): 
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From the first equation in (23) we will calculate the output 
signal: 
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and successively substitute this equation in other equations 
of (23). After rewriting we obtain the following state-space 
difference equations: 
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Writing in matrix notation we obtain: 

[ ] [ ] [ ] ,1 nxnn BvAv +=+  (26) 

where the vectors are defined as follows: 
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and 
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The symbol T expresses the vector transposition operation. 
Matrices A and B are in the form: 
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Matrix notation for a group of state-space difference equ-
ations has the advantage that it can represent in a clear way 
not only a discrete system with one input and one output 
but also systems with many inputs and outputs. In that case 
signals x[n] and y[n] will be replaced by vectors. This man-
ner of notation of difference equations is primarily employ-
ed in the field of automatic measurement and control. Simi-
larly, for output signal y[n] we obtain the matrix equation: 

[ ] [ ] [ ] .nxnny DvC +=  (28) 

In our case, matrices C and D are in the form: 
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Conclusion No. 2: State-space description of difference 
equations provides a more advantageous description of the 
properties of a linear time-invariant discrete system with 
several inputs and several outputs. Initial conditions are 
defined by the state-space vector v[n] for all state-space 
quantities at one instant of time; for example, for n = 0 the 
initial conditions are defined by vector 

[ ] [ ] [ ] [ ] [ ][ ]T
121 00000 vvvv ss L−=v . 

To follow the dynamic change in the discrete system pro-
perties, matrix equation (26) is used, which determines the 
values of state quantities for the subsequent instant of time. 
Based on the knowledge of state-space vector v[n] the va-
lues of output signal or signals can be determined at any 
instant of time. 

4. State-Space Difference Equations 
for Implementation on Digital 
Signal Processor 
A limiting factor of implementing algorithms for di-

gital signal processing in fixed-point digital signal proces-
sors is the representation of positive and negative numbers 
in data arithmetic-logic units (DALU) of digital signal pro-
cessors. For the representation of binary numbers the two’s 
complement in fraction representation is used. Its dynamic 
range of numbers is limited to the interval between the hig-
hest positive number 1 − 2−b and the lowest negative num-
ber −1. The symbol b denotes the number of bits of the 
binary number. Although accumulators in the DALUs of 
digital signal processors have additional bits that increase 
this dynamic range in partial calculations, the algorithms 
need to be pre-modified lest the range is exceeded. The 
respective modification depends on the architecture of 
digital signal processor and on the algorithm structure. In 
the implementation of the properties of discrete systems, 
state-space difference equations are used that also start 
from the form of (23) but the subsequent modification is 
performed in a different way. In state-space equations no 
substitution is performed for output signal y[n], which is 
obtained from equation (24). Eventually we obtain the 
following system of s first-order state-space difference 
equations: 
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The output equation remains the same as in the preceding 
case: 
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To solve the system of difference equations we will use the 
one-sided Z-transform. For individual Z-transforms of sta-
te-space variables in equations (30) we obtain: 

( ) ( ) ( ) ( ) [ ]
( ) ( ) ( ) ( ) [ ]
( ) ( ) ( ) ( ) [ ]

( ) ( ) ( ) ( ) [ ]
( ) ( ) ( ) [ ].0

,0
)32(
,0

,0

,0

1
0

1
0

1
11

1
1

11

3
1

4
1

3
1

33

2
1

3
1

2
1

22

1
1

2
1

1
1

11

ss

sss

ss

ss

ss

vzzYbzzXazV

vzzVzzYbzzXazV

vzzVzzYbzzXazV

vzzVzzYbzzXazV

vzzVzzYbzzXazV

+−=

++−=

++−=

++−=

++−=

−−

−
−−−

−

−−
−

−
−

−−
−

−
−

−−
−

−
−

M

 

The one-sided Z-transform of the equation is: 

( ) ( ) ( )zXazVzYb ss += 1  . (33) 

Equation (32) is successively substituted into equation (33) 
and after rewriting we obtain: 

( ) ( ) ( ) ( ) [ ] .0
1

ii

s

i

vzHzXzHzY ∑
=

+=  (34) 

The system transfer function is the same as in the equation 
(15): 
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The remaining transfer functions in equation (34) have the 
form: 
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If using the inverse Z-transform we transform equation 
(34) into the time domain, we obtain the resultant solution 
of state-space difference equations (30) and (31) in the 
form: 

[ ] [ ] [ ] [ ] [ ] .0
1

ii
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i
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=

+∗=  (37) 

Sequence h[n] is the impulse response of discrete system, 
which we obtain using the inverse Z-transform of transfer 
function: 
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[ ] ( ) .d
πj2
1 1

C
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Similarly, impulse responses hi[n] can be determined from 
impulse functions Hi[z]. The symbol * denotes the opera-
tion of discrete convolution, which has the form: 
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 (39) 

Conclusion No. 3: First-order state-space difference equ-
ations in the form of (30) have advantageous properties for 
implementing discrete systems in the digital signal proces-
sor or in another type of microprocessor. The initial state of 
discrete system is defined by the values of state quantities 
vi[0]. The response of the system to initial conditions is 
given by the sum of impulse responses hi[n] of identical 
form, which are only differently shifted in time. The form 
of impulse responses is defined by the nominator of system 
transfer function H(z). 

5. Example 
On the example of a type IIR digital filter in the form 

of a three-band rejection filter we will show how important 
it is to select a correct realization algorithm that matches 
the given architecture of digital signal processor. Let us 
choose the currently most powerful fixed-point digital sig-
nal processor TMS320C6416 (Texas Instruments). Its ar-
chitecture is of the VLIW type and the computation power 
of the digital signal processor is over 8000 MIPS. The 
amplitude frequency response of the rejection filter can be 
seen in Fig. 1. 

 
Fig. 1.  Amplitude frequency response of 12th-order rejection filter. 

Since the sampling frequency fs is comparatively high in 
comparison with the centre frequencies of individual re-
jection filters, this digital filter is highly sensitive to the 
quantization of coefficients and intermediate results of 
arithmetic operations. Chosen for the realization was the 
classical structure of the series connection of 6 partial sec-
tions of 2nd order, which can be seen in Fig. 2. 

 
Fig. 2. Series connection of 6 partial sections of 2nd order for the 

realization of rejection filter. 

The incorrect selection itself of the structure of partial 
section can make the algorithm non-functional. E.g., if we 
choose the 2nd canonic structure (Direct Form [7]) as the 
structure of partial sections, this filter cannot be implemen-
ted at all, since the values of internal state-space variables 
v1i[n] and v2i[n], i = 1, 2, 3, 4, 5, and 6, will exceed the 
permissible imaging range of numbers in two’s comple-
ment. As an example, see the waveform of state-space 
variable v1i[n] of partial section No. 1 for the 1st canonic 
structure (Fig. 3) and the 2nd canonic structure (Fig. 4). 
Similar waveforms can be determined for the remaining 
state-space variables of further sections. Using the 2nd 
canonic structure we would have to choose a floating-point 
digital signal processor, which might be slower and more 
expensive for a given application. The description of the 
whole simulation procedure can be found in [9]. 

 
Fig. 3. State-space variable v11[n] of the first partial section of 

2nd order, which is realized in the 1st canonic form. 

In addition to selecting the optimum structure and coping 
with the effect of quantizing, etc., it is also important on 
how the given structure depends on the setting of non-zero 
initial conditions. This involves, for example, the form of 
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transfer functions Hi(z) in equation (34), which has been 
calculated for the 1st canonic structure of type IIR digital 
filters. Let the input signal be formed by the sum of 4 har-
monic components of 50 Hz, 100 Hz, 150 Hz and 200 Hz 
frequencies in the form: 
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In Fig. 5 we can see the waveform and DFT spectrum, 
which can be displayed directly in the Code Composer 
Studio development environment, for filtering the input 
signal (40) in a form when all initial conditions are set to 
zero. The spectrum only contains the 200 Hz, harmonic 
component because the other components have been filte-
red by the rejection filter. 

 
Fig. 4. State-space variable v11[n] of the first partial section of 

2nd order, which is realized in the 2nd canonic form. 

For the same filter and the same input signal we will now 
change all the initial conditions to a non-zero value (0.1). 
In Fig. 6 we can see that saturation will occur, i.e. the num-
ber range of the representation of numbers in two’s com-
plement will be exceeded, which will result in non- linear 
operations being inserted. Due to saturation the spectrum 
will spread and contain several components instead of one 
component. 

This undesirable situation must be solved in several 
possible ways such that saturation does not occur. It is 
therefore important that prior to implementing the given 
algorithm in a digital signal processor a mathematical ana-
lysis should be performed such that the algorithm is best 
adapted to the architecture of the digital signal processor 
used. 

6. Summary 
Hybrid microcontrollers and fixed-point digital signal 

processors are frequently used in a great number of appli-
cations. These are in particular applications in telecommu-
nications (modems, mobile phones, speech encoding, sub-
channel coding, etc.), in consumer electronics (type 
MPEG3 recorders, multimedia games, digital cameras, 

etc.), in automotive industry (various types of drive cont-
rol), in computer technology (disk drive management), and 
the like. It is therefore important to seek optimum structu-
res of realizing algorithms for digital signal processing. 
Linear stationary discrete systems are most frequently 
described by means of linear difference equations with 
constant coefficients. Best suited for implementation in 
fixed-point digital signal processors are state-space diffe-
rence equations in the so-called canonic form, which are 
defined by equations (30). They have a homogeneous 
computation structure so that their application is advanta-
geous for both digital signal processor with Harvard archi-
tecture and digital signal processors with type VLIW archi-
tecture, which use a high degree of parallelism in the pro-
cessing. 

In a similar way, other currently used structures of 
discrete systems can be analyzed, such as lattice, linear 
prediction, cepstral or continued-fraction-expansion struc-
tures, which are usually also described by systems of dif-
ference equations. 
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Fig. 5. Waveform and spectrum of input and output signals when filtering by rejection filter for zero initial conditions obtained by simulation on 

a TMS320C6416 digital signal processor in the Code Composer Studio development environment (Texas Instruments). 

 
Fig. 6. Waveform and spectrum of input and output signals from Fig. 5 after all initial conditions have been set to non-zero. 


