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Abstract. An optimization problem for designing non-
uniformly spaced, linear antenna’s arrays is formulated 
and solved by means of a controlled random search algo-
rithm. 

The proposed iterative method aims at a linear array and 
the optimization of element positions and excitations 
coefficients by minimizing the side-lobes level and respec-
ting a beam pattern shape. Selected examples are included, 
which demonstrate the effectiveness and the design flexi-
bility of the proposed method in the framework of the 
electromagnetic synthesis of linear antenna arrays. 
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1. Introduction 
An antenna array with certain radiation characteristics 

is often asked to be designed. Necessarily, the nulls have to 
be in a certain direction [1], or the main lobe has to be di-
rected in a certain direction; also other requirements for the 
direction and the level of the side lobes [2] might be stated. 

The global synthesis of antenna arrays that generate a 
desired radiation pattern is a highly nonlinear optimization 
problem. Many analytical methods have been proposed for 
its solution. Examples of analytical techniques include the 
well-known Taylor method and the Chebyshev method [3]. 
In many applications, the synthesis problem of an antenna 
array consist of finding an appropriate set of amplitude and 
phase weights that will yield the desired far-field pattern 
with an equally spaced linear array [4]. However, it is well 
known that the antenna performance related to the beam 
width and side lobes levels can be improved by choosing 
both the best position and the best set of the amplitude and 
phase for each element of an unequally spaced array [5]. 

The paper is aimed to present a modular method, ba-
sed on a controlled random search (CRS) algorithm, which 
is able to simultaneously optimize the excitation coeffici-
ents (amplitude and phase) and the best position, according 

to different constraints, such as side lobes peak minimiza-
tion, and beam pattern (BP) shape modeling. Although the 
CRS has proven to be very robust in many applications [6], 
[7], it is somewhat less known to the engineering commu-
nity. The CRS is characteristic by finding good near-opti-
mal solutions early in the optimization run. The CRS does 
not use derivatives, and is also independent on the comple-
xity of the objective function under consideration. 

Two examples are used to demonstrate the effective-
ness of the proposed controlled random search–based 
procedure for the antenna array optimization. The CRS-
simulated results are also compared with those obtained by 
genetic algorithms in [4]. 

2. Antenna Array Pattern 
Formulation 
The far field factor of a linear array with an even 

number of uniformly spaced isotropic elements (2N) can be 
written in the form: 
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where k0 = 2π/λ is the wave number, θ  denotes the angular 
direction, ai and ψi are the amplitude and the phase of the 
excitation complex feed. 

The position di can be computed from the inter-ele-
ment spacing (Fig. 1), according to the following formula: 
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In order to synthesize the desired pattern, element excita-
tions (ai and ψi ) and positions di are be optimally deter-
mined by the CRS. In order to control the actual pattern 
both in the shaping region and in the predetermined side 
lobe regions, we have adopted the cost function given as: 
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where 
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Here, SRmin and SRmax represent the minimum and the ma-
ximum shaping region, respectively (Fig. 2), and L(θ) does 
not equal to 0 only if |F(θ)| is situated inside the shaping 
region. 

antenna element
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Fig. 1.  Non-equidistant elements symmetrical linear array. 

In order to obtain the desired pattern, the cost function 
given by (3) is minimized by the CRS, which is described 
in the following section. 

3. Control Random Search 
Algorithm 
The idea of the Controlled Random Search (CRS) 

algorithm was developed by W. L. Price [8]. The algorithm 
requires a minimum preparation of data to operate, and can 
be applied to constrained as well as to unconstrained opti-
mization problems where the gradient of the objective 
function is unavailable. 

In the preliminary stage, a pool of randomly selected 
points is generated and the function values are calculated 
for each point. Then the main routine starts which compu-
tes subsequent trial points and updates pool accordingly. 
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Fig. 2.  Desired pattern shape. 

CRS, although simple, has several disadvantages in its 
initial form. Primarily, the convergence rate worsens while 
approaching neighborhood of the solution. Secondary, the 
unconditional rejection of a trial point that falls off the con-
straints makes it difficult to find optimal points that are lo-

cated on the optimization domain boundaries. The CRS 
algorithm used in this paper is presented below: 

• Step 0:Let k be the step counter; set k = 0. Randomly 
choose M points from the optimization domain D. 
The chosen points constitute the initial pool Pk = 
{X1, ..., XM }. The pool size should be sufficiently 
large, usually M = 10( n+1). Evaluate the objective 
function for the chosen points f( Xj), j = 1 ... M. 

Here, X is the array parameters being searched, D is 
the optimization domain (e.g., amplitude ai ∈ [0, 1], 
phase ψi ∈ [0, 2π] and inter-elements spacing ∆di ∈ 
[0.25 λ, 1.5 λ], where λ = 0.06 m corresponding to 
the frequency 5 GHz), and n is the dimension of the 
cost function defined in (3), n = 3N. 

• Step 1: Find the point Xk,l in the current pool Pk that 
provides the lowest cost function value, and point Xk,h 
providing the highest cost function value. 

• Step 2: Create n+1 dimensional subset of Pk called 
the simplex Sk. The simplex has to contain the point 
Xk,l. The remaining n points are randomly chosen 
from Pk (without duplications; choosing Xk,h is allo-
wed). Compute the centre of the simplex: 
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• Step 3: Compute a trial point  Xt by reflecting the 
current worst simplex element Xk,h from the simplex 
centre Sk: Xt = 2 ck – Xk,h. 

• Step 4: If any coordinate of Xt violates constraints, 
bounce the point back into the domain using the follo-
wing scheme: 
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• Step 5: If the test point is better than the worst point 
in the pool, i.e. if f(Xt) < f(Xk,h), then create a new pool 
Pk+1 that is Pk with Xk,h replaced by Xt , and increase 
the step counter. Otherwise, go to the step 2 in order 
to repeat the creation of a simplex Sk once more. 

• Step 6: Stop if the stop criterion is satisfied, i.e. if the 
objective function value has not decreased below ε in 
a prescribed number of steps h: 
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• Step 7: Go to the step 1. 

The total number of function evaluations made can be ap-
plied as an additional stop criterion. There are two reasons 
for introducing this criterion: 
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• We obtain a general control of costly function evalu-
ations (in terms of the CPU-time used); 

• We can prevent the algorithm from falling acciden-
tally into infinite loops. 

The implementation of CRS concerns two its parts: a pool 
initialization and a trial point computation. In the initiali-
zation phase, the index of the first point in the initial pool 
P0 that has not been yet processed is available for all the 
threads. A single thread starts to process the point (i.e. 
starts to compute the cost function value) and increments 
the index. Therefore, the pool is not divided between 
threads in advance, but is processed accordingly to a thread 
computation capability. 

When the initialization is done, each thread enters its 
own trial point computation loop. There are several possi-
bilities of interactions between loops in order to improve 
convergence. W. L. Price in [8] proposes all threads to 
operate on the same pool that is updated as soon as a better 
point is found. In this scheme, all threads reflect the same 
point Xh , but with regard to various simplex centers. 

4. Numerical Results 
In order to illustrate the capabilities of the CRS for 

the shaped beam pattern synthesis of a linear array, two 
examples are considered. In the first example, an unequally 
spaced linear array consisting of 12 isotropic elements is 
used, and in the second one, we consider an unequally spa-
ced linear array consisting of 8 isotropic elements. In the 
optimization process, the value of n is 18 and 12 for the 
two examples, respectively. The total number of function 
evaluations is fixed to 3000 and ε to 10-4, which is found to 
be sufficient to obtain satisfactory patterns with a desired 
performance. The calculations are performed on a personal 
computer with Pentium IV processor running at 2.26 GHz, 
and for the two examples considered here, the optimization 
results are obtained within 485 s and 325 s, respectively. 
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Fig. 3. The mask of desired pattern (dashed line) and the radia-

tion pattern obtained by the CRS using 12 elements (so-
lid line). 

As the first example, a pattern with a main beam 
width defined in the sector θ ∈ [–20°, 20°] and a side lobe 
level lower than –20 dB were chosen as the desired pattern. 
The mask of the desired pattern is shown in Fig. 3. In order 
to obtain the desired pattern, the values of the cost function 
parameters given in (5) are used as follows: 
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In Fig. 3, the pattern obtained from the CRS by determi-
ning both the amplitude, the phase and the position of each 
element of the array is illustrated. Clearly, the pattern 
shows a good performance in the shape region, and there 
are no side lobes exceeding the specified value –20 dB. 
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Fig. 4. Optimized parameters of array: a) optimized amplitude 

excitation, b) optimized phase excitation, c) position of 
each element in the array. 

The required element amplitude, the phase and the position 
of each array element for the pattern given in Fig. 3 are de-
picted in Fig. 4. 
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In the second example, we are going to produce the 
array pattern with a large main beam width defined in the 
sector θ ∈ [0°, 60°]. The SRmax and SRmin are given below: 
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Fig. 5 shows the CRS is capable to synthesize an unequally 
spaced linear array producing a shaped beam pattern with 
the good performance both in the shaped region and in the 
side lobe region. The algorithm can easily consider any 
parameter of interest (side lobe level, beam width, etc.) by 
including it in the cost function. 
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Fig. 5. The mask of desired pattern (dashed line) and the radi-

ation pattern obtained by the CRS using 8 elements (so-
lid line). 

The elements amplitude, phase and positions obtained by 
the CRS to produce the pattern depicted in Fig. 5 are 
shown in Fig. 6. 

5. Comparative Study 
In order to evaluate the performance of the proposed 

CRS algorithm, this section compares the numerical results 
calculated by CRS and the Genetic Algorithm (GA). For 
comparison, a linear array of 30 isotropic elements at half 
wavelength spacing is considered. The array excitation 
amplitude is symmetric with null phase, the number of 
iterations (generations) is set to 100 [4]. 

Fig. 7 shows the comparison of the far-field patterns 
among the CRS-simulated results, and the GA-simulated 
results in [4]. Obviously, the side lobes close to the main 
beam are lowered, and the levelled side lobes in Fig. 7 
indicate that the result is close to the optimum solution for 
that particular beam width. This fact can be confirmed by 
comparing the solid line GA pattern [4] and the dashed line 
CRS one. Although the CRS side lobe level is –35.15 dB, 
this result remains comparable to the GA one: –36.02 dB. 
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Fig. 6. Optimized parameters of array: a) optimized amplitude 

excitations, b) optimized phase excitations, c) position of 
each element in the array. 

For the simulation speed comparison between CRS and GA 
[4], the GA simulation takes about 120 s on 486/33 MHz 
PC [4]. The CRS simulation takes 142 s on Pentium IV 
processor running at 2.26 GHz. Obviously, the GA simula-
tion is much faster than CRS for array-pattern synthesis. 
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Fig. 7. Comparison of the radiation patterns of the broad side 

linear array with excitation coefficients by the CRS 
(dashed line) and the GA method (solid line). 
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However, the GA requires a good adjustment of these 
parameters in order to obtain good results. Fig. 8 shows the 
elements amplitude excitations generated by the CRS algo-
rithm and GA method. All elements amplitude excitations 
are almost identical. 

6. Conclusion 
A new optimization method for the synthesis of linear 

array pattern functions has been proposed and assessed. 
The shaped beam pattern, the constrained side-lobes level, 
and the main-lobe width are contemporarily taken into the 
account by minimizing a cost function by means of an in-
novative improved Controlled Random Search procedure. 
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Fig. 8. Comparison of the optimized amplitude excitations com-

puted by CRS (dashed line) and GA (solid line). 

The different results show the great flexibility of the pro-
posed approach. Many additional extensions of the CRS 
method could be also easily implemented both in term of 
the cost function definition, the optimization methodology 
and applications, and antenna types. 
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