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Abstract. In this paper, we propose a robust adaptive 
minimum mean square error (MMSE) Rake receiver for 
asynchronous DS-CDMA systems. The receiver uses the 
modified MMSE criterion that incorporates the differential 
detection and the amplitude compensation for interference 
cancellation in a time-varying multipath fading channel. 
We investigate that the proposed Rake receiver can achieve 
the higher output signal to interference plus noise ratio 
(SINR) than the conventional adaptive Rake receiver, since 
the modified MMSE criterion does not attempt to track the 
time-varying MMSE solution. Computer simulations verify 
that the performance of the proposed Rake receiver is 
better than those of the conventional and the adaptive Rake 
receiver. 
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1. Introduction 
In direct sequence code division multiple access (DS-

CDMA) communication systems, all transmissions occupy 
the same time and frequency, but they use distinct code 
sequences to allow signal separation at the receiver. The 
performance of a conventional receiver (i.e. matched filter) 
depends critically on the multiple access interference 
(MAI) and the near-far problem [1], [2]. Moreover, a 
multipath fading channel is encountered in most mobile 
wireless situations. Multipath fading not only increases the 
MAI by introducing extra interfering paths but also distorts 
the desired signal component. As the number of simultane-
ous users in the system becomes large, the performance of 
the conventional Rake receiver is degraded due to the detri-
mental effect of the MAI [3].    

The minimum mean square error (MMSE) detection 
has attracted considerable attention because it can suppress 
the MAI, and needs only the spreading sequence and 
timing of the desired signal [4]. An alternative solution to 
suppress the MAI without the aid of any training sequence 
is the blind minimum output energy (MOE) detection [5]. 
To overcome the MAI and the near-far problem, some 

adaptive interference cancellation Rake receivers have 
been proposed [6]–[8]. A linear MMSE receiver was ap-
plied to each resolvable path to remove the interferences 
[6]. A modified version of a blind adaptive multiuser detec-
tor was proposed in [7] to avoid deep fading impairments 
and the distortion of the desired signal due to signature 
sequence mismatch. In [8], a linearly constrained minimum 
variance Rake receiver was proposed to enhance the 
decorrelating Rake receiver which used the assumption of 
a quasi-synchronous channel. Most of evaluations of these 
receivers have been performed under assumption of perfect 
channel estimation. This is not valid in practice. A time-
varying fading significantly degrades the performance of 
these receivers due to less reliable channel estimation [9]. 

A differential detection, which can be used for 
demodulation if the fading channel is difficult to estimate, 
was analyzed in time-varying multipath fading channels 
[10]. This analysis has not considered in the context of 
suppressing the MAI and the inter-symbol interference 
(ISI) arising from the existence of different transmission 
paths. In [11], an adaptive interference canceller (AIC) on 
differential detection was proposed for removing the fast 
phase variation. A modified adaptive MMSE receiver was 
proposed [12] to achieve the performance improvement of 
MAI cancellation for a fast flat fading channel. However, 
the adaptive interference cancellation characteristics in 
time-varying multipath fading channels need to be con-
sidered, because time-varying fading causes significant 
performance degradation when the adaptive algorithms are 
applied.  

In this paper, we propose a robust adaptive MMSE 
Rake receiver for a time-varying multipath fading channel. 
Specifically this receiver provides immunity to the near-far 
problem as well. We investigate that the proposed scheme 
can improve the BER performance and robustness, result-
ing in the improved performance in a time-varying multi-
path fading channel. 

The rest of this paper is organized as follows. In Sec-
tion 2, the DS-CDMA system model in a time-varying 
multipath fading channel is described. The robust adaptive 
Rake receiver is introduced in Section 3, and the BER 
performance and the output signal to interference plus 
noise ratio (SINR) of the proposed scheme are compared to 
those of the conventional and the adaptive interference 
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canceller on differential detection Rake one based on simu-
lation results in Section 4. Finally, conclusions are made in 
Section 5.  

We define notations as follows: matrices are denoted 
by boldface upper case letters and vectors are denoted by 
boldface lower case letters; superscripts (.)T and (.)H  de-
note the transpose and Hermitian transpose, respectively; 
E{.} denotes the statistical expectation; finally, ||.|| denotes 
the Euclidian norm. 

2. System Description 
This paper deals with a single user detection scheme 

in multipath fading channels. We consider a base-band 
asynchronous K-user DS-CDMA system using differential 
phase shift keying (DPSK) modulation. The transmitted 
signal for the k-th user is represented as 
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where dk(i) {+1,-1} is the i-th differentially encoded 
symbol, c

∈
k(t) is the spreading sequence, Pk represents the 

signal power and T is the symbol period. The spreading 
sequence is defined as 
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where Tc is the chip period, T/Tc=N is the length of the 
spreading sequence, and p(t) is the chip waveform. Each 
user's transmitted signal is assumed to pass through a time-
varying multipath Rayleigh fading channel [3] whose im-
pulse response is modeled as 
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where ak,l(t), φk,l(t) and τk,l, respectively, denote the path 
amplitude with 1}|)({| 2

,1 =∑ = taE lk
L
l

k , the phase shift and the 

propagation delay of the l-th path for the k-th user, δ(t) 
denotes the Dirac delta function, and Lk denotes the total 
number of paths of the k-th user.  

The received signal can be written as  
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where n(t) is a complex zero-mean additive white Gaussian 
noise (AWGN) with a two-sided noise power spectral 
density of  N0/2 at the receiver input.  

In the remainder of this paper, it is assumed that the 
desired user is user 1, the power of desired user is P1=1, 
Lk=L for all k, and the l-th detector is synchronized to the l-
th path. The complex base-band signal (4) is sampled at the 
chip rate after conventional chip-matched filtering. Similar 
to previous studies [6]-[8], we define τ1,l as a multiple of 

the chip interval Tc, and Tc ≤ τ1,2 <…< τ1,L < T is assumed.  
The received signal vector for the l-th detector is given by 
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where ck=(ck,1,ck,2,…,ck,N)T is the spreading vector of the k-
th user and lk ,

~c is the effective spreading waveform for the 
l-th path of the k-th user [12] (see also Fig.1). 

The received signal of the k-th user in a multipath 
fading channel is shown in Fig. 1. Due to asynchronous 
transmissions, two adjacent symbols in each path con-
tribute to rl(i).   
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Fig. 1. Relationship between the desired signal and the inter-

fering signal for detecting the l-th path signal. 

3. A Robust Adaptive MMSE Detector 
We develop a robust adaptive Rake receiver that 

incorporates the differential detection and the amplitude 
compensation to achieve the output SINR improvement 
and robustness in a time-varying multipath fading channel. 
The block diagram of the proposed receiver is shown in 
Fig. 2. Considering a structure using individual L-detectors 
and a Rake combiner, each received signal vector (5) is fed 
to the adaptive interference cancellation filter. The l-th 
filter output of the k-th user at the i-th bit can be written as 

)()()( iiiz l
H
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l

where xl(i) is a vector of the weight coefficient of the adap-
tive filter. Let us define a demodulated symbol as 
b1(i)=d1(i)d1(i-1). Thus, the decision variable for detecting 
the i-th bit of the desired user can be expressed by 
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where gl  a positive combining gain, and the bit estimate is 
made b1(i)=sgn{Re[y(i)]}. If the weight vector equals to the 
spreading code of the desired user, that is, xl(i)=c1 for all l 
and i, it is obvious that the receiver is equivalent to a con-
ventional Rake receiver [10]. 
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Fig. 2. Block diagram of the proposed receiver. 

3.1 Adaptive Implementation 
Assuming that the sequence b1(i)=d1(i)d1(i-1) is 

known in a training mode and can be estimated in a deci-
sion-directed mode. The error signal el (i) is defined as the 
difference between the adaptive interference cancellation 
filter output and the amplitude compensated desired signal 
for the l-th path, that is 
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where āl(i) is an amplitude estimate for the i-th bit of the l-
th path. In order to estimate the amplitude variation, we use 
the moving average for past Q bits, it can be readily com-
puted as  
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where the optimal length of Q will be evaluated in Section 
4. The modified MMSE criterion incorporated with the 
amplitude compensation is given by 
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To minimize Jl(i) with respect to xl(i), we set the derivate 
equal to the null:  
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Thus, this results in the update equation for the normalized 
least mean square (NLMS) algorithm given by 
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where μ(i) is the time-variant step size parameter which is 
approximated as  2||)(||/~)( ii lrμμ = ; 2~0 << μ [14]. 

3.2 Multipath Combining 
In our analysis, the fading processes among the L-di-

versity channels are assumed to be mutually statistically 
independent [3]. Thus, it can be shown that the output 
signal of the interference cancellation for the l-th path may 
be decomposed into  
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where ml(i) consists of noise and residual interferences 
(MAI and ISI), al(i) and φl(i) are the channel amplitude and 
phase variation for the i-th bit of  the l-th path, respectively. 

In order to understand that the performance improve-
ment of the proposed scheme can be achieved as a result of 
the convergence of the modified MMSE, we make fol-
lowing assumptions: 
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We may define the output SINR as the ratio of the desired 
signal power to the power of interferences and noise for Eq. 
(15) under the above assumptions. This leads to  
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From Eq. (8), the error signal for the l-th path can be ex-
pressed as 
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where the adaptive filter does not attempt to track the chan-
nel amplitude when the channel amplitude is perfectly 
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compensated al(i) = āl(i). However, the error signal without 
amplitude compensation results in the higher mean square 
error (MSE), because the adaptive filter attempts not only 
to cancel the residual interferences but also to track the 
channel amplitude variation al(i).    

It is clear from (17) that if we can use the above as-
sumptions (14) and there are no interferences (ISI and 
MAI) then the maximum SINR can be achieved, but the 
residual interference in practice is not negligible then we 
define the proposed scheme as the near-optimal combining. 
However, this scheme can achieve significant performance 
improvement over the AIC Rake receiver (without the 
amplitude compensation).   

In slow fading channels, it is assumed that the fading 
variations for all users are maintained constant over many 
bit durations so that the adaptive filter can easily track their 
parameters. However, in fast fading channels, the fading 
fluctuations for all users change so rapidly that the adaptive 
filter can only track the mean values of the fading fluctua-
tions [1]. Because the adaptive algorithm attempts to track 
the fading fluctuations, the AIC Rake receiver results in the 
degradation of the diversity combining gain. We will show 
this degradation under single-user environment (K=1) in 
Section 4.   

4. Simulation Results 
Computer simulations were carried out to evaluate the 

SINR and BER performance of the Rake receivers in a 
time-varying multipath fading channel. Uniform and expo-
nential distributions of the delay power profiles are con-
sidered [9]. The normalized maximum Doppler frequency 
is fmaxT=0.01. We consider near-far environments without 
power control. The near-far ratio is defined as NFRk=Pk/P1. 
More detailed parameters used in these simulations are 
shown in Tab. 1. 
 

Modulation system DPSK DS-SS 

Detection method Differential detection 

Spreading sequence Gold codes (N=31) 

Bit timing Asynchronous 

Transmission channel 2, 4-path 
Rayleigh fading channel 

Power delay profile Uniform, exponential  
delay profile 

Tab. 1.  Simulation parameters. 

In the following simulations, we compare the BER 
performance of the proposed Rake receiver with those of 
the conventional Rake [10] and the differential adaptive 
interference cancellation Rake receiver (AIC Rake) [11], 
which is similar to the proposed scheme without the 
amplitude compensation.  

After 2000 iterations, the adaptive filters reached the 
steady state, and the gap between the maximum achievable 

SINR of the proposed and that of the AIC Rake was main-
tained in the range of convergence. Thus, both adaptive 
Rake receivers used the same step size 05.0~ =μ  and 2000 
training bits. The combining gains, g1=…=gL were as-
sumed for simplicity.  

From Fig. 3, it can be seen that a minimum BER per-
formance is achieved for fmaxT=0.01 when the window 
length equals to 3. In the following simulations, we use 
Q=3 with respect to fmaxT=0.01 for channel estimation in 
the proposed scheme.  
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Fig. 3. Average BER performance as a function of window 

length (Q) with K=5, L=2 (uniform delay profile) and 
fmaxT=0.01. 

Fig. 4 plots the average BER performances of the receivers 
as a function of the average Eb/N0 with K=1 and L=4 (ex-
ponential delay profile). This figure shows that multipath 
diversity can offer significant improvement in the per-
formance. The results indicate that for multipath diversity, 
the proposed Rake receiver performs almost as well as the 
conventional Rake receiver which is the optimal combining 
when the interference is negligible. However, the AIC 
Rake receiver degrades as the Eb/N0 is increased compared 
with the other receivers. This is because the adaptive algo-
rithm fails to track each fading fluctuation, resulting in 
multipath combining with degraded gain. 
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Fig. 4. Average BER performance as a function of the average 

Eb/N0 with K=1, L=4 (exponential delay profile) and 
fmaxT=0.01. 
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Fig. 5 and 6 plot the achievable SINR averaged over 
100 independent runs in 2-path Rayleigh fading channels 
for uniform delay profile NFRk=10 and 15[dB], respec-
tively. It can be observed that the AIC Rake receiver can-
not sufficiently suppress the strong MAI caused by the near 
far problem. Whereas the proposed Rake receiver can ef-
fectively suppress the strong MAI in a time-varying multi-
path fading channel. 
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Fig. 5. Comparison of the achievable SINR for the proposed 

adaptive Rake receiver and the adaptive interference can-
cellation Rake receiver (NFRk=10[dB],  Eb/N0=30[dB],  
K=5 and fmaxT=0.01) . 
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Fig. 6. Comparison of the achievable SINR for the proposed 

adaptive Rake receiver and the adaptive interference can-
cellation Rake receiver (NFRk=15[dB],  Eb/N0=30[dB],  
K=5 and fmaxT=0.01) . 

We plot the average BER performances of the receivers as 
a function of the average Eb/N0 with K=5, L=2 (uniform 
delay profile), and fmaxT=0.01 in Fig. 7. Both adaptive 
receivers offer significantly better performance than that of 
the conventional one. Further, the performance of the pro-
posed Rake receiver is much better than that of the AIC 
Rake receiver in both NFRk=10 and 15 [dB]. The results 
indicate that the proposed scheme provides near far immu-
nity even in multipath conditions and that it performs better 
than the one proposed in [10]. 
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Fig. 7. Average BER performance as a function of the average 

Eb/N0 with K=5, L=2 (uniform delay profile) and 
fmaxT=0.01. 

The average BER performance as a function of the average 
Eb/N0 for the receivers in 4-path Rayleigh fading channels 
for the exponential delay profile with K=5 and fmaxT=0.01 
is presented in Fig. 8. From these results, it is found that 
the proposed Rake receiver can effectively remove the 
interferences (ISI and MAI) in a time-varying multipath 
fading channel. 
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Fig. 8. Average BER performance as a function of the average 

Eb/N0 with K=5, L=4 (exponential delay profile) and 
fmaxT=0.01. 

5. Conclusions 
In this paper, we have proposed the robust adaptive 

MMSE Rake receiver for asynchronous DS-CDMA sys-
tems to improve the BER degradation caused by the pres-
ence of the ISI and the MAI in time-varying multipath 
fading channels. We have shown that the proposed receiver 
can achieve the performance improvement and robustness, 
since the modified MMSE criterion does not attempt to 
track the fading fluctuations. A comparison with the per-
formance of the AIC Rake receiver and that of the pro-
posed receiver indicates that the proposed receiver pro-
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vides the better BER performance and the higher maximum 
achievable SINR. Specifically it provides immunity to the 
near-far problem as well. 
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