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Abstract. The objective was to study uncertainty in an-
tenna input impedance resulting from full one-port Vector 
Network Analyzer (VNA) measurements. The VNA process 
equation in the reflection coefficient ρ of a load, its meas-
urement m and three errors Es, determinable from three 
standard loads and their measurements, was considered. 
Differentials were selected to represent measurement inac-
curacies and load uncertainties (Differential Errors). The 
differential operator was applied on the process equation 
and the total differential error dρ for any unknown load 
(Device Under Test DUT) was expressed in terms of dEs 
and dm, without any simplification. Consequently, the dif-
ferential error of input impedance Z -or any other physical 
quantity differentiably dependent on ρ- is expressible. Fur-
thermore, to express precisely a comparison relation be-
tween complex differential errors, the geometric Differen-
tial Error Region and its Differential Error Intervals were 
defined. Practical results are presented for an indoor UHF 
ground-plane antenna in contrast with a common 50 Ω DC 
resistor inside an aluminum box. These two built, un-
shielded and shielded, DUTs were tested against frequency 
under different system configurations and measurement 
considerations. Intermediate results for Es and dEs char-
acterize the measurement system itself. A number of calcu-
lations and illustrations demonstrate the application of the 
method.  

Keywords 
Microwave measurements, network analyzer, meas-
urement errors, reflection coefficient, antenna input 
impedance. 

1. Introduction 
In full one-port measurements with a vector network 

analyzer (VNA) of real characteristic impedance Z0, a de-
vice under test (DUT) with impedance Z has a complex re-
flection coefficient ρ defined by 

ρ =(Z − Z0)/(Z + Z0) (1) 

and related to its complex VNA measurement m by a bilin-
ear transformation  

ρ =(m − D)/[M(m − D) + R] (2) 

in which all the quantities are implicitly dependent on the 
frequency.  

The quantities D, M and R have been defined as sys-
tem errors Es and a physical meaning has been given to 
them [1]. Accordingly, D is the directivity error ED, M is 
the source match error EM and R is the frequency response 
error ER. Although it is possible to define Es in terms of 
elementary circuit quantities, as it has been analytically 
proven by the authors for typical VNA system configura-
tions that will be described in the following, this analysis is 
too extensive to be reproduced here. The resulting equiva-
lent error model is shown as flow graph in Fig. 1. 

 
Fig. 1.  Full one-port error model. 

Mathematically, transformation (2) can be uniquely deter-
mined from three given distinct values ρ = ρk (k = 1, 2, 3), 
with modulus |ρk| and argument θk, and respectively known 
m = mk, with modulus |mk| and argument ϕk [2]. This de-
termination expresses D, M and R in terms of three stan-
dard reflection coefficient values and corresponding VNA 
measurements. Since ρ of any unknown DUT is calculated 
by (2), the measurement system itself is characterized 
mainly by the D, M and R in terms of frequency. Therefore, 
ρ is calculated from seven complex numbers: m, mk and ρk. 
However, since the four measurements have inaccuracy 
and the three standard loads uncertainty, there is an error 
(uncertainty) in the value of ρ. In addition, since ρ is 
a complex number, this error in ρ has a geometric repre-
sentation as a region of the complex plane that may be used 
efficiently in comparison issues. 
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To the best of the authors' knowledge, for the ρ error 
estimation and its geometric representation:  

(a) There are several numerical techniques based on 
the simplest approximation of ρ error by the ΔS11 ≅ |m| − |ρ| 
equation of measurement uncertainty, which is graphically 
represented by a circle of radius |ΔS11| around ρ [3]-[4].  

(b) There are analytic methods using partial deriva-
tives for specific or nonspecific ρk values, to estimate the 
influence of one or more standard load uncertainties -but 
not of the inaccuracies of measurements- on the ρ error. 
The most complete of them is perhaps the work of 
Stumper, who studied full two-port VNA measurements in 
2003 [5]. However, although full one-port measurements 
can be considered in general as a simplified application of 
two-port measurements, the partial deviations, for the three 
load uncertainties given in [5], cannot be generalized to in-
clude the four measurement inaccuracies.  

(c) There is no analytic expression using the total dif-
ferential dρ or method using its geometric representation. 

In this paper, the complete expression of the total dif-
ferential error dρ for the reflection coefficient ρ and its ex-
act geometric representation are expressed, without any 
simplification due to a particular load value and/or a negli-
gible load uncertainty and/or an insignificant measurement 
inaccuracy. Thus, the expression for the differential error 
of any physical quantity, differentiably dependent on the 
reflection coefficient, is made possible. This includes the 
case of the uncertainty of the input impedance Z that can 
always be expressed by (1) in terms of ρ and practically 
used, as long as a pair of input terminals can be well de-
fined for the DUT. 

2. Theory 
The following form of (2) was considered as the proc-

ess equation in five complex variables 

ρmM − ρMD + ρR − m + D = 0. (3) 

The application of the differential operator to (3) resulted a 
process equation in five differentials 

   (1−ρΜ)dD + ρ(m − D)dΜ + ρdR + 

+ [R + Μ(m − D)]dρ +  (ρΜ − 1)dm = 0. (4) 

The equation (3) was applied three times for the three 
standard loads, with values of ρk equal to A, B, C and their 
three VNA measurements mk equal to a, b, c, respectively. 
After that, the system of three process equations was 
solved for D, M and R  

 D = [abC(A − B) + bcA(B − C) + caB(C − A)]/F  

  = ∑ abC(A − B)/F, (5) 

 M = [c(B − A) + a(C − B) + b(A − C)]/F 

  = ∑ c(B − A)/F, (6) 

 R = [(A − B)(a − b)(B − C)(b − c)(C − A)(c − a)]/F2 

  = [∏ (A − B)(a − b)]/F2 (7) 

with F ≡ cC(B − A) + aA(C − B) + bB(A − C) 

  = ∑ cC(B − A))  (8) 

where ∑ and ∏ produce two more terms, from the given 
one, by cyclic rotation of the letters a, b, c or A, B, C. The 
determination of errors is known as the calibration of the 
VNA measurement system and the three standards A, B, C 
are called the calibration standards. 

These errors were considered as dependent on the 
variables a, b, c, A, B, C and thus the three process equa-
tions in differentials formed a system, which was then 
solved for the three differentials dD, dM and dR  

 dD = [∏ (a − b) ∑ (B − C)BCdA + 

  + ∑ (b − c)2(B − A)(C − A)BCda]/F2 

  = (1/F2){(a − b)(b − c)(c − a) 

  ⋅ [(B − C)BCdA + (C − A)CAdB + (A −B)ABdC] 

  + (b − c)2(B − A)(C − A)BCda  

  + (c − a)2(C − B)(A − B)CAdb  

  + (a − b)2(A − C)(B − C)ABdc},  (9) 

 dM = [∑ (a − b)(c − a)(B − C)2dA 

  − ∏ (A − B) ∑ (b − c)da]/F2 

  = (1/F2){(a − b)(c − a)(B − C)2dA 

  + (b − c)(a − b)(C − A)2dB 

  + (c − a)(b − c)(A − B)2dC 

  − (A − B)(B − C)(C − A) 

  ⋅ [(b − c)da + (c − a)db + (a − b)dc]},  (10) 

 dR = {∑ [F + 2(a − b)B(A − C)][(B − C)2dA ∏(a − b) 

  − (b − c)2da ∏ (A − B)]}/F3 

  = (1/F3){[F + 2(a − b)B(A − C)] 

  ⋅ [(a − b)(b − c)(c − a)(B − C)2dA 

  − (A − B)(B − C)(C − A)(b − c)2da] 

  + [F + 2(b − c)C(B − A)] 

  ⋅ [(a − b)(b − c)(c − a)(C − A)2dB 

  − (A − B)(B − C)(C − A)(c − a)2db] 

  + [F + 2(c − a)A(C − B)] 

  ⋅ [(a − b)(b − c)(c − a)(A − B)2dC 

  − (A − B)(B − C)(C − A)(a − b)2dc]}. (11) 

The developed expressions (9)-(11) are the total dif-
ferential errors for the system errors D, M, and R. These 
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expressions were mechanically verified using a developed 
software program for symbolic computations.  

Notably, using manufacturer's data for standard load 
uncertainties and VNA measurement inaccuracies, the 
characterization of the measurement system can be com-
pleted by considering dD, dM and dR in terms of frequency 
and, perhaps, we can call the set of them "the differential 
error core of the measurement system".  

The total differential error of ρ was then expressed by 

 dρ = [−RdD − (m − D)2dM − (m − D)dR + Rdm] 

  / [M(m − D) + R]2 (12) 

which was considered dependent, through dD, dM and dR, 
on L = 7 independent variables m, mk  (a, b, c), ρk (A, B, C) 
and on their L = 7 independent differentials dm, dmk (da, 
db, dc), dρk (dA, dB, dC). 

To make possible a precise comparison between vari-
ous complex differential errors, geometric notions were in-
troduced below.  

Since Z0 is real, (1) is a transformation of the close 
right half plane to the closed unit circle [6]. Therefore, if |ρ| 
= 1, care must be exercised to restrict its differential into 
the unit circle. The VNA measurements have a specific 
bounded range for their modulus away from the origin Ο of 
the complex plane, so that the domain of each measure-
ment is a bounded circular annular with its centre at the Ο.  

Uncertainty and inaccuracy data outline regions for 
each dρ and its dm. If z = |z|ejy stands for any of the inde-
pendent variables and dz = ejy(d|z| + j|z|dy) for its differen-
tial (where d|z| and dy in dz polar form are independent real 
differentials with values in given intervals) then the corre-
sponding contribution to dρ is a summation term Wdz, with 
factor W = |W|ejV, so that 

 Wdz = |W|ej(V + y)d|z| + |W|ej(V + y + π/2)|z|dy. (13) 

W is in fact a known value of the respective partial deriva-
tive. Each expression Wdz outlines a contour for a partial z 
Differential Error Region (z DER) around O. If z ≠ 0, the 
partial DER is a parallelogram with perpendicular sides d|z| 
and |z|dy, initially parallel to the rectangular coordinate 
axes Re{z} and Im{z}, stretched or contracted by |W| and 
rotated by (V + y) around Ο. If z = ρ = 0 then dz = ejyd|z|, 
with 0 ≤ d|z| and indeterminate y, so that the corresponding 
partial DER is a circle with radius |W|d|z|. 

Accordingly, a total DER is the sum of either L paral-
lelograms or (L − 1) parallelograms and 1 circle. DER is 
then a convex set with contour: either a polygonal line of 
4L line segments and vertices, at most or a piecewise curve 
composed of 4(L − 1) line segments, 4(L − 1) circular arcs 
and 8(L − 1) vertices, at most. Some vertices may coincide.  

Differential Error Intervals DEIs were defined by the 
greatest lower and least upper differential error bounds for 

the real and imaginary parts of dρ. DEIs are the projections 
of a DER on the rectangular coordinate axes. In other 
words, DEIs are the sides of the approximate upright rec-
tangle which is circumscribed to a given exact DER.  

On the occasion: On the one hand, the commonly 
used approximation, mentioned in 1(a), is related to the ex-
act maximum modulus of the differential error |dρ|, which 
in fact is the radius of the circle that circumscribes the ρ 
DER with center at ρ. On the other hand, the partial devia-
tions, mentioned in 1(b), cannot be generalized to outline a 
total ρ DER. 

To study the influence of both inaccuracies and un-
certainties on ρ differential error, we considered a rear-
rangement of the terms in dρ. The four inaccuracy terms 
corresponding to dm, dmk were defined as the di sum, and 
the three uncertainty terms corresponding to dρk, as the du 
sum. After that, dρ was considered as a sum of two parts 

 dρ = di + du . (14) 

These conclusions can be applied to any other physi-
cal quantity, differentiably dependent on all, some or just 
one of the above independent variables. Thus, any such 
quantity has an L-term DER, where 7 ≥ L ≥ 1. For exam-
ple, the impedance Z of a DUT has a 7-term DER through  

 dZ = 2Z0dρ/(1 − ρ)2 = ζdρ, (15) 
 dZ = ζ(di + du) = dI + dU  (16) 

that is a Z DER which results by stretching and rotating dρ 
with ζ = 2Z0/(1 − ρ)2, so that, finally, the Z DER is similar 
to the ρ DER.  

3. Results 
Although the developed expressions are independent 

of the particular measurement system in use, we report, for 
the sake of completeness, that measurements appearing in 
this paper were made using a type-N, Z0 = 50 Ω measure-
ment system with the following specific devices:  

(i) HP8505A Opt 005PL VNA with (ii) Opt 007 HP8501A 
Storage Normalizer, (iii) HP8660C Synthesized Signal 
Generator with (iv) HP86603 RF Section, (v) HP5340A 
Opt 011 frequency counter, (vi) a HP85032A 50 Ω Type-N 
Calibration Kit, (vii) HP85032-60011 Open/Short, (viii) 
HP 8502 Transmission/Reflection Test Set, (ix) HP11501A 
-183 cm RF Cable, and (x) HP-IB IEEE488 82335B/8-bit 
ISA Interface Card under the control of an AMD486/66 
PC. 

This system operates from 1 to 1300 MHz with 
100 Hz PLL stability in CW (non-sweep) frequency mode. 

The set of standards used consists of a Short-circuit 
with ρk=1 = −1, a matching Load with ρk=2 = 0 and an Open-
circuit with ρk=3 = +1. These are the commonly SLO cali-
bration standards given in Tab. 1.  
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ρk |ρk| θk° 

A   1  180 

B   0    - 

C   1    0 

Tab.1.  SLO standard reflection coefficient values. 

Substitution of the SLO reflection coefficient values to (5)-
(11), simplifies the developed expressions for errors and 
differentials: 

 D = b, (17) 

 M = (c + a − 2b)/(c − a), (18) 

 R = 2(a − b)(b − c)/(c − a), (19) 

 dD = −[2(a − b)(b − c)/(c − a)]dB + db, (20) 

 dM = [(a − b)/(c − a)]dA 

  + [4(b − c)(a − b)/(c − a)2]dB 

  + [(b − c)/(c − a)]dC 

  − [2(b − c)/(c − a)2]da 

  − [2/(c − a)]db 

  − [2(a − b)/(c − a)2]dc, (21) 

 dR = [(a − b)(b − c)/(c − a)]dA 

  − [2(b − c)2/(c − a)2]da 

  + {4[(c − a) + 2(b − c)](a − b)(b − c)/(c − a)2}dB 

  − {2[(c − a) + 2(b − c)]/(c − a)}db 

  − [(a − b)(b − c)/(c − a)]dC 

  + [2(a − b)2/(c − a)2]dc]}. (22) 

On the occasion, the specific ρk mentioned in 1(b) are the 
SLO values that result (17)-(22), which obviously cannot 
be generalized to express total differential errors in any 
other case.  

Therefore, as the matching load ρ = 0 is included in 
any SLO calibration, such a measurement system has a dif-
ferential error core consists of a D DER with 4 line seg-
ments, 4 circular arcs and 8 vertices at most, an R DER and 
M DER with 20 line segments, 20 circular arcs and 40 ver-
tices at most. Consequently, such a system produces a ρ 
DER and a Z DER with 24 line segments, 24 circular arcs 
and 48 vertices at most. 

The considered load uncertainties are given in Tab. 2, 
where in the absence of manufacturers' data for dA and dC, 
both of them were considered equal to the uncertainty of 
the Maury 8810B1 Open-circuit [7].  

 

dρk d|ρk| dθk

 -180  -178 
dA  0  0.010 

 +178  +180 

dB  0  0.029        - 

dC -0.010  0    -2    +2 

Tab. 2.  Intervals of SLO uncertainty values. 

The annular region for any VNA measurement is 
specified from −100 to 0 db in modulus and ±180° in ar-
gument. Measurements result with a decimal unnormalized 
floating-point mantissa of 4 digits, for both modulus and 
argument.  

It is well known that VNA measurements are refer-
enced to a test connector (reference plane), which can be 
either the test port itself on the Reflection/Transmission 
Test Set [3(viii)] or the far-end connector of a Z0 Transmis-
sion Line [3(ix)], connected to this test port. In either case, 
the error model of the system is still that of Fig. 1, with dif-
ferent error values of course. These two possibilities were 
considered here as two system configurations: System 1 
and System 2. 

A suite of developed software applications:  

(a) Controls the system and collects data in terms of 
frequency, using the IEEE-488 protocol,  

(b) Processes the collected data and computes the ver-
tices of DER and the end-points of its DEIs and 

(c) Sketches pictures for D, M, R, ρ, Z and their DERs 
in terms of frequency steps and makes a film using them as 
frames. 

3.1 System Errors 
The measurements of two System configurations were 

processed in different ways to demonstrate the variety of 
possible measurement considerations.  

System 1: Measurements were made from 2 to 
1289 MHz in 13 MHz steps. Each load ρk was measured 
twice and the mean value of these measurements was con-
sidered as mk. The endpoints of inaccuracy intervals dmk 
were considered as the two signed values of the absolute 
half difference between the two measurements, plus 1/2 of 
the unit in the last place of the mantissa, both in modulus 
and argument. The centre frequency f1 = 639 MHz of the 
band was selected to reveal DER details. The resulting mk 
and dmk are given in Tab. 3. 
 

1 |mk| db ϕk° 1 d|mk| db dϕk° 

a   -0.625  -178.8 da   0.020   2.075 

b  -49.8     3.95 db   0.050   7.300 

c   -0.5     2 dc   0.025   1.650 

Tab. 3.  System 1: The considered measurements and inaccuracies at f1. 
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System 2: Measurements were made from 600 to 
1000 MHz in 4 MHz steps. Each load ρk was measured 
once. Although, a detail scale of inaccuracy in terms of 
signal level is available, the measurement inaccuracies dmk 
were considered here as symmetric intervals defined by 1 
unit in the last place of the corresponding mantissa, both in 
modulus and argument of mk. This emulates any other case 
in which there is no further information, so inaccuracy 
must be considered as the least inaccuracy, independent of 
the four possible rounding methods (to nearest, down, up 
or towards zero). In other words, this measurement consid-
eration results the differential error core of the System 2. 
The frequency f2 = 932 MHz was selected to detail the pro-
posed method. The measurements and the considered inac-
curacies at f2 are given in Tab. 4. 
 

2 |mk| db ϕk° 2 d|mk| db dϕk° 

a   -1.47    122 da   0.01    1 

b  -25.0    44.9 db   0.1    0.1 

c   -1.40   -43.5 dc   0.01    0.1 

Tab. 4.  System 2: The considered measurements and inaccuracies at f2. 

Tab. 5 contains the comparison of the errors in the two 
Systems at the selected frequencies. The wide diversity be-
tween the errors of System 1 and System 2 against the fre-
quency results immediately from the comparison of Fig. 2 
with Fig. 4. Fig. 3 shows the error DERs for the two Sys-
tems 1 and 2 at f1 and f2 respectively, with different scaling 
for the two coordinate axes to reveal the details. The con-
tours are outlined with small circles as their vertices. 

Since the objective was the uncertainty of antenna 
impedance and the related application was studied using 
System 2, additional example calculations are done at f2 for 
an appropriately selected contour point, which is marked 
with an arrow on the related DERs below. The rectangular 
form of data for this example is given in Tab. 6.  

 
Fig. 2.  System 1 errors against frequency. 

 

 |D| db ϕD° |M| db ϕM° |R| db ϕR° 

1  -49.8   3.95 -42.16  61.28 -0.562   1.60 

2  -25.0  44.9 -24.21  80.0 -1.474 -50.8 

Tab. 5.  System errors at the selected frequencies. 

 

 
Fig. 3.  System error DERs at the selected frequencies. 

 
 

 
Fig. 4.  System 2 errors against frequency. 
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2 Re Im 2 Re Im 

A  -1   0 dA  -0.0100  -0.0349 

B   0   - dB   0.0289   0.0029 

C   1   0 dC   0.0100   0.0349 

a  -0.4474   0.7160 da   0.0130   0.0070 

b   0.0398   0.0397 db  -0.0005  -0.0004 

c   0.6174  -0.5859 dc  -0.0003  -0.0018 

D    0.0398   0.0397 dD  -0.0178   0.0169 

M   0.0106   0.0607 dM   0.0429   0.0112 

R   0.5335  -0.6540 dR  -0.0317  -0.0256 

Tab. 6.  System 2: Example results for a contour point. 

3.2 An Antenna in Contrast with a Resistor 
DUT 1: A typical resistor with a nominal DC imped-

ance of 50 Ω ±20% tolerance was soldered on a type-N 
base connector and enclosed in an aluminum box to form 
an EM shielded DUT for reference. 

DUT 2: A typical UHF ground-plane antenna of five 
λ/4 elements at 900 MHz, with apex angle 90°, was built 
by copper bare wire of 1 mm diameter and its terminals 
were soldered directly on a type-N connector of a rather 
poor dielectric insulation. Therefore, it is, in essence, an 
EM unshielded DUT. The antenna was roughly installed 
indoors, nearby and outside of an anechoic chamber.  

The antenna was simulated by 96 wire segments. The 
simulation was carried out with a suite of developed visual 
tools supported by a fully analyzed, corrected and redevel-
oped edition of the original thin-wire computer program by 
Richmond [8] while the connector was simulated sepa-
rately.  

The measurements m and their inaccuracies dm of 
50 Ω DC Resistor at f1 and UHF Ground-Plane Antenna at 
f2, were considered under the mentioned measurement con-
ditions for System 1 and System 2 and they are given in 
Tab. 7 and Tab. 8, respectively.  
 

1 |m| db ϕ° 1 d|m| db dϕ° 

m  -10.4   -21.75 dm   0.050  0.200 

Tab. 7.  50 Ω DC Resistor: Measurement and inaccuracy at f1. 
 

2 |m| db ϕ°  2 d|m| db dϕ° 

m  -8.21   -155 dm   0.01     1 

Tab. 8.  UHF Ground-Plane Antenna: Measurement and inaccuracy at f2. 

The values in Tab. 9 complete the example of the selected 
contour point for UHF Ground-Plane Antenna at f2.  

The precise relation of the total complex differential 
error dρ to its complex differential error parts di and du, 
due to all inaccuracies and all uncertainties respectively, is 
illustrated by their DERs in Fig. 5 for the 50 Ω DC Resis-
tor at f1 and in Fig. 6 for the UHF Ground-Plane Antenna 
at f2. 

2 Re Im 2 Re Im 

m  -0.3522  -0.1642 dm  -0.0033  -0.0060 

ρ  -0.0975  -0.4989 dρ   0.0694  -0.0030 

Z  25.5 -34.3 dZ   3.0  -3.7 

Tab. 9.  UHF Ground-Plane Antenna: Results for the contour point. 

The circumscribed dash-dotted circle to each DER, corre-
sponds to the max value of |dρ|, |di| and |du|, respectively. 

 
Fig. 5. 50 Ω DC Resistor: ρ related DERs at f1. 

 
Fig. 6.  UHF Ground-Plane Antenna: ρ related DERs at f2. 

The illustrations for the uncertainty dZ = dI + dU and 
the calculated exact difference ΔZ for 50 Ω DC Resistor at 
f1 and UHF Ground-Plane Antenna at f2, are shown in Fig. 
7 and Fig. 10, respectively. Numeric evaluation of ΔZ was 
resulted 27x2 points, from L = 7 interval endpoints for dm, 
dmk and dρk, which are dense enough to appear as stripes, 
placed over the Z DER. The computation time for ΔZ cal-
culations exceeds that for Z DER by a factor of about 60. It 
is concluded that almost all ΔZ points belong to Z DER. 

The precise relation of the Z DER to its complex dif-
ferential error parts dI and dU, geometrically represented 
by their DERs, make clear that measurement inaccuracies 
are not insignificant in Z uncertainty calculations. 
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Fig. 7.  50 Ω DC Resistor: Z related DERs and ΔZ at f1. 

 
Fig. 8. 50 Ω DC Resistor: ρ and Z DERs against frequency.  

 
Fig. 9.  50 Ω DC Resistor: Z-DEIs against frequency. 

 
Fig. 10.  UHF Ground-Plane Antenna: Z related DERs and ΔZ at f2.  

 
Fig. 11. UHF Ground-Plane Antenna: ρ and Z DERs against frequency. 

 
Fig. 12.  UHF Ground-Plane Antenna: Z-DEIs against frequency.  
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To demonstrate the method, selected DER frames for 
ρ and Z, mentioned at 3(c), are shown, as beads on space-
curved filaments against frequency, in Fig. 8 for 50 Ω DC 
Resistor and Fig. 11 for UHF Ground-Plane Antenna. 

The computed DEIs for the input resistance R and re-
actance X against frequency are shown, in Fig. 9 for 50 Ω 
DC Resistor and Fig. 12 for UHF Ground-Plane Antenna.  

In Fig. 12, the dashed lines represent predicted val-
ues, for the input impedance Z of UHF Ground-Plane An-
tenna simulation, which are closed enough to the computed 
DEIs. 

In Fig. 13, the ρ DER is compared with the approxi-
mate |ΔS11|. It is concluded that ΔS11 underestimates the un-
certainty of 50 Ω DC Resistor at f1 and overestimates that 
of UHF Ground-Plane Antenna at f2. 

 
Fig. 13.  Precise comparison between Δρ stripes, ρ-DER and ΔS11 circle. 

To estimate roughly the separate contribution of all 
inaccuracies and all uncertainties to the differential error of 
ρ and Z, max values are commonly used. In Tab. 10 the 
max values of |dρ|, |di| and |du| are expressed as percentage 
of |dρ| from Fig. 5 and Fig. 6, and of |ΔS11| from Fig. 13. 
Since from (15) and (16) |dZ|, |dI| and |dU| are analogous to 
|dρ|, |di| and |du| respectively, the max values of them are 
also given in the same columns of Tab. 10. Although 
max|dZ| ≤ max|dI| + max|dU|, the particular shape of the ρ 
related DERs, in Fig. 5 and Fig. 6, and of their similar Z re-
lated DERs, in Fig. 7 and Fig. 10, result in max|dZ| ≅ 
max|dI| + max|dU|, as shown in Tab. 10.  
 

50 Ω DC Resistor UHF Ground-Plane Antenna 

|dρ| |dρ| 
Max |ΔS11| Max 

|dZ| 
Max |ΔS11| Max 

|dZ| 

|dρ|  210 |dZ|  |dρ| 45 |dZ|  

|di|   50 |dI| 25 |di| 10 |dI| 20 

|du|  160 |dU| 75 |du| 40 |dU| 80 
 

Tab. 10.  Percentage comparison of max differential errors at f1 and f2. 

Tab. 11 contains the results for max values of differ-
ential errors over the whole measurement bands of System 
1 and System 2. Great divergences of |ΔS11| from dρ are 
noted. Max|dI| contributes an amount of about 30 ~ 35% of 
max|dZ| to the total max|dZ|, under these rather conserva-
tive considerations for the particular applications. This re-

sult complements the one from Z related DERs of Fig. 7 
and Fig. 10, so it is concluded that measurement inaccura-
cies are significant indeed in Z uncertainty calculations.  
 

50 Ω DC Resistor UHF Ground-Plane Antenna

|dρ| |dρ| 
Max |ΔS11| Max

|dZ| 
Max |ΔS11| Max

|dZ| 

|dρ| 155~2660 |dZ|  |dρ| 30~145 |dZ|  

|di|  35~ 195 |dI|  5~35 |di|  5~ 25 |dI|  5~30

|du| 120~2470 |dU| 65~95 |du| 25~135 |dU| 70~95

Tab. 11.  Percentage comparison of max differential errors vs. frequency. 

Hence, the proposed method may be efficiently used 
in any other case where the process equations (3), (4) and 
the defined DERs and DEIs can be found application. 
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