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Abstract. This contribution deals with the problem       
of automatic phoneme segmentation using HMMs. Auto-
matization of speech segmentation task is important for 
applications, where large amount of data is needed to 
process, so manual segmentation is out of the question. In 
this paper we focus on automatic segmentation of re-
cordings, which will be used for triphone synthesis unit 
database creation. For speech synthesis, the speech unit 
quality is a crucial aspect, so the maximal accuracy in 
segmentation is needed here. In this work, different kinds 
of HMMs with various parameters have been trained and 
their usefulness for automatic segmentation is discussed. 
At the end of this work, some segmentation accuracy tests 
of all models are presented.  

    data cannot be segmented manually any more, so it is 
necessary to use some kind of automatic segmentation in 
this case. Another example of automatic segmentation 
necessity can be a data preparation for the initialization 
phase of a HMM training.  
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1. Introduction 
In today’s speech applications, large speech databases 

are used frequently. For many of them, high-accurate seg-
mentation has to be done. In the past, a manual segmenta-
tion has been used mostly. It was hard work, took a lot of 
time and required an experienced person. Today this is 
becoming impossible, because databases containing many 
hours of speech utterances are very common.  

Speech synthesis can be a good example. For pho-
neme synthesis (wide-spread in the 70th and 80th years, but 
not used any more because of a bad quality of synthesized 
speech) around 40 speech units is needed. For diphone 
synthesis (wide-spread in the 90th years) it can be up to 
1.600 and for today mostly used triphone synthesis it can 
be around 30.000 speech units. It is obvious, that speech 
database for phoneme synthesis usually contains only few 
sentences and can be segmented manually without prob-
lems. Speech database for diphone synthesis can contain 
several minutes of speech and still can be segmented 
manually. But for triphone synthesis database creation we 
need several hours of speech utterances. This amount of 

2. Automatic Segmentation 
Most of today’s automatic segmentation methods are 

based on speech recognition algorithms using DTW (Dy-
namic Time Warping) [1, 2, 3] or HMM (Hidden Markov 
Models) [1, 2, 4, 5], but we can also use methods based on 
speech signal or frequency spectrum change-points, for 
example SVF (Spectral Variation Functions) [6]. 

Speech modeling with HMMs is considered as the 
best method for automatic segmentation today, therefore it 
will be described here in detail. Three-state models of mo-
nophones or triphones are common in continuous speech 
recognition applications. The number of mixtures is usually 
32-64 for monophones and 3-8 for triphones. Automatic 
segmentation is based on speech recognition, so identical 
models and parameters can be used for it. For automatic 
segmentation of an utterance, its model composition is 
needed first, created by monophone/triphone models con-
catenation. This composite model is used by Viterbi algo-
rithm for finding the most probable assignment of speech 
frames and model states. With knowledge of this assign-
ment, frames located on borders of monophone/triphone 
models (parts of the composite model) can be declared as 
phoneme borders. The Viterbi algorithm output probability 
shows, how the model M matches to the speech signal X 
and can be used for model quality (accuracy) determina-
tion. It is defined as: 
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where w is the Viterbi sequence of model states maximiz-
ing the P(X,M), tw(f)w(f-1) is the probability of the transition 
from the state visited in frame f-1 to the state aligned to 
frame f and pw(f)(xf ) is the probability that the vector xm is 
emitted by the latter state. The assignment of speech 
frames to model states is called the forced alignment [7]. 
Illustration of this method can be found in [2]. 
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2.1 Signal Framing 
For further processing of an utterance and its recog-

nition, speech signal segmentation into short-time parts 
called frames is needed. To avoid confusion, this kind of 
segmentation will be further called framing. Framing is 
signal division into short parts with the same length. These 
parts have to be short enough to be stationary and long 
enough to give us sufficient information at once. For better 
signal description, these frames are overlapped, as shown 
in Fig. 1.  

For continuous speech recognition, 20-25 ms long 
frames are used mostly, with the 10 ms frame rate (the 
frame rate is a time between two incoming frames), so the 
length of overlap is about a half of the frame length. For 
automatic segmentation, these values are insufficient. After 
recognition, in the phase of backward assigning of frames 
to model states, we can find border frames only, not exact 
border points in speech samples. Border sample n between 
the two neighboring frames Frame1 and Frame2 can be 
determined as  
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where Frame1 is the last frame assigned to the first model, 
Frame2 is the first frame assigned to the second model and 
mid() establishes the position of the middle sample of the 
frame. So with the 10 ms frame rate, we cannot determine 
the border point with more than 10 ms accuracy. The 
higher frame rate we use (less time between two incoming 
frames), the more accuracy we can achieve. In our experi-
ments the 3ms frame rate has been used. 

 Frame 1 Frame 3 Frame 5

Frame 4  Frame 2 Frame 6

 
Fig. 1. Speech signal framing. 

2.2 Speech Corpus 
For successful model training, large amount of train-

ing data has to be used. For continuous speech recognition 
purpose, we usually need to create speaker and environ-
ment independent models. So the training database has to 
contain various recordings from many speakers, male and 
female, recorded in different conditions. The more various 
aspects we include the better models (more universal) we 
obtain. Good sources of this kind of data are radio and 
television. In this database, we can mix TV and radio news, 
sport, weather forecast and discussion programs. If we 
train models only on one-speaker training data, we can use 
them only for this speaker’s utterances recognition. For 
other speakers, we obtain much worse recognition score. 
For high-quality independent models training, we need tens 
of hours of training data. 

In this contribution, we focused on automatic seg-
mentation of recordings obtained from one speaker, which 
will be used for triphone synthesis unit extraction. For this 
kind of automatic segmentation, the training database will 
be absolutely different from the one for continuous speech 
recognition. The goal is to recognize one-speaker utter-
ances, all of them recorded in the same conditions. We 
don’t need speaker-independent universal models, so we 
don’t need many speaker recordings in the training data-
base. Actually it is undesirable, because speaker-inde-
pendent model recognition is always worse, than speaker-
dependent (recognition with models trained on data of the 
same speaker). On the contrary, speaker independent 
models are usually more robust, than speaker dependent, 
because it is always easier to record several utterances 
from various speakers, than a lot of utterances from only 
one speaker. 

Robustness is a very important indicator in model 
training. 100 frames is an amount of data, recommended as 
minimum for confidential determination of one Gaussian 
function parameters [7]. For quality model training, at least 
100 frames per one model mixture are necessary. For some 
of phoneme models this can be a problem. In phonetic 
transcription of our Czech training database, containing 
about 36000 phonemes, the „ó“ phoneme was found only 
34 times, what means less than 0,1%. In 50 minutes long 
speech recording, this phoneme filled less than 8 seconds. 
With 3 ms frame rate, this represents about 2700 frames. 
Let’s imagine the following. With three-state HMM we 
cannot expect uniform distribution of frames into states (3 
x 900). The first state usually represents the start of the 
phoneme, the second its middle and the third its end (tran-
sition to next phoneme). The second (middle) state uses to 
be the longest and contains most of frames. With the theo-
retical distribution 10% frames to 1st state, 80% frames to 
2nd state and 10% frames to 3rd state, we can assume for the 
„ó“ phoneme the following distribution: 1st state - 270 
frames, 2nd state - 2160 frames and 3rd state - 270 frames. 
This amount of training data is sufficient for one-mixture 
models, where for each state only one Gaussian function is 
computed. In this case, for more than one-mixture models, 
100 frames per mixture rule could be violated already. 
There is a different assignment of frames to each mixture, 
so for two mixtures, the distribution could be 70:200 for 
example. In the training database creation phase, there is 
very important to care about a sufficient amount of all 
phonemes, to keep models robust enough and to avoid 
recognition score decrease. 

2.3 Model Training 
As mentioned before, for successful recognition and 

automatic segmentation, quality phoneme models are 
needed. Model parameters are obtained from statistical 
analysis of a large amount of training data. This process is 
called model training and consists of two parts.  

For the first phase called Initialization, a small 
amount of segmented data is needed (automatically or 
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manually). For each phoneme, every occurrence of it in 
these data is found and its initial model parameters (feature 
means and variances) are computed. If these models con-
sist of more than one state, Viterbi algorithm is used in 
several iterations to determine the optimal frames-to-states 
distribution. At the end of this phase we have phoneme 
models, which could be used for recognition and automatic 
segmentation already. But the recognition score or the 
segmentation quality would be low (depends on the 
amount of the training data and the quality of its segmenta-
tion). If no segmented data are available, a method called 
„Flat Start“ [4, 7] can be used. This algorithm computes 
means and variances from all training data regardless the 
meaning and use them for each model. So after that, every 
phoneme model will have the same parameters – some-
thing like an „average“ phoneme. These models are not 
usable for recognition, they are only prepared for the next 
phase. The Flat Start method isn’t used very often, because 
it makes recognition results worse.  

The second phase is called Reestimation and im-
proves the accuracy of model parameters, obtained in the 
initialization phase. It is based on Baum-Welch algorithm 
[7], which assigns speech frames to model states like 
Viterbi algorithm, but doesn’t need segmented data on 
input (needs only phonetic transcription of the utterance). 
The other difference is that each frame is not assigned to 
one state only, but belongs with a certain probability to 
every state of the model. This improves flexibility signifi-
cantly. In the training phase, phoneme borders are not 
fixed, so speech frames located on the phoneme borders 
can be assigned to both models. This enables diffusion of 
neighboring states. 

In this phase, a large amount of speech recordings can 
be used. The more is the better. Several iterations of Baum-
Welch algorithm have to be done to achieve the best result. 
In each iteration, speech frames are newly redistributed 
into states and then model parameters are updated. In the 
following iteration, previous computed models are used. In 
continuous speech recognition, about ten iterations are 
made usually. With more iterations, the effect called over-
training can occur. Models are still better focusing on the 
training data, but with different data recognition (other 
speaker, microphone) the score gets worse. This case is 
dangerous for models, which will be used for speaker-
independent recognition, but in case of automatic segmen-
tation, where the training data will be recognized, the 
overtraining could be a valuable option.  

In training of our models, the following assumptions 
were used: 
• The better initialized models we use, the better 

models we get after reestimation (this is the reason 
why Flat Start shouldn’t be used). 

• The more training data we use, the better and more 
robust models we get. 

• The more different sources of data we have, the more 
universal models we get. 

• For one-speaker utterances recognition, speaker-de-
pendent models are better than universal.   
From these assumptions we decided, that for auto-

matic segmentation, a large amount of one-speaker data 
should be used for initialization and reestimation. Maxi-
mum of Baum-Welch algorithm iterations should be made, 
until models get better.  

For comparing quality of models, the logarithmic 
probability, obtained from Viterbi and Baum-Welch 
algorithm in the training phase (equation 1) can be used. It 
is computed as the cumulated product of frame assignment 
probabilities with optimal assignment frames to states. In 
practice, average logarithmic probability per frame is often 
used. It is always a negative number, usually in range from 
-70 to -40. The higher the average logarithmic probability 
is the more accurate the models are.  

3. Experiments 
For model training, we had about 650 MB of speech 

data (the total length of recordings was 5 hours and 38 
minutes).  

Individual parts were labeled as following:  
 

• Data1: One-speaker’s recordings (a man), which will 
be used for triphone synthesis unit extraction and 
hence needs to be automatically segmented. 

• Data1_MS:  Manually segmented part (15%) of 
Data1.  

• Data1_AS: Data1, automatically segmented with 
common continuous speech recognition monophone 
models, obtained from the Speech Lab at the Techni-
cal University of Liberec (64 mixtures, frame rate = 
10 ms, frame length = 20 ms). 

• Data2: Recordings of various speakers. They will be 
used for models training only. 

• Data2_MS: Manually segmented part (21%) of 
Data2. 

• Data2_Male: Male recordings from Data2. 
• Data2_RS_Male: Male recordings from Data2_RS. 

For speech recordings parameterization, the following 
options were used: 
• frame length = 20 ms,  
• frame rate = 3 ms,  
• number of features = 39  

(13 MFCCs and their first and second derivations)  
For parameterization, HTK software [7] has been used. 

3.1 Monophones 
First of all, three-state monophone models have been 

trained using the HTK software. These models are context-
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independent and their number use to be equal to the num-
ber of phonemes. For each monophone, all occurrences of 
this phoneme in the training data will be used for training. 
The results of the training are shown in Tab. 1. All models 
were trained with 12 iterations of Baum-Welch reestima-
tion algorithm. In the first two cases, 8-mixture models 
were trained, keeping satisfactory robustness even for the 
least occurred phonemes. 32-mixture models were trained 
then. Although there were not enough training data for 
satisfactorily training the least occurred phonemes, in result 
these models were better, then the 8-mixture models.  
 

Tab. 1. Monophone models training results. 

Other conclusions follow: 
 

• For model initialization, all available data are better to 
be used, although they are not segmented onto 
phonemes accurately, than less accurately segmented 
data. 

• The more training data of one speaker are available, 
the more accurate models will be obtained. 

• Speaker-dependent models are better for automatic 
segmentation than speaker-independent ones. 

• The more similar the training data are to the data for 
segmentation (only men recordings), the better 
models will be. 

Although the models trained on automatically seg-
mented data were best in result, manual correction of some 
phoneme borders was needed before training. The pho-
neme models with fewer occurrences in training data 
couldn’t be trained at all, because of insufficient training 
data (due to wrong automatic segmentation, some phoneme 
lengths were set to almost zero).  

In Fig. 2, the average logarithmic probability per 
frame is shown after each of iterations. The models number 
2 and 4 (initialized on automatically segmented data) are 
improving only a little, only two or three iterations are 
sufficient to use. For the models initialized on manually 
segmented data, more iterations are needed, 10-12 is suffi-
cient.  
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Fig. 2. Average log. probabilities per frame after each iteration.

3.2  Triphones 
Three-state triphone models were trained next. 

Triphones are context-dependent phonemes, so they can 
model speech signal better, than monophones (especially 
the coarticulation). In monophones training, all occur-
rences of each phoneme were used to create model, re-
gardless the neighboring phonemes. In triphone models 
training, several models are created for each phoneme, 
regarding its left and right context. The number of models 
depends on training parameters. Triphone training process 
is a little bit more complicated, than the monophone one. 
For triphone models initialization, one-mixture monophone 
models are needed. Parameters of triphone models, derived 
from the same monophone model, are simply copied from 
this monophone. Transition matrices of all triphones, de-
rived from the same monophone, are very similar, so they 
can be copied and kept unchanged for the whole training 
process. This brings an advantage of robustness preserva-
tion. The number of speech frames, usable to train triphone 
model, will be much less, than the number of frames usable 
for monophone model training (frames used for training of 
one monophone have to be divided to train all the derived 
triphones). So with keeping transition matrices fixed, unre-
liable parameter estimation is avoided. Because there will 
be the same matrices for more triphones, it is called transi-
tion matrices tying. 

After initialization, several iterations of Baum-Welch 
reestimation algorithm are used. Models of all triphones, 
found in the training data, will be the result. These models 
are not applicable for recognition yet, because of the lack 
of robustness (some of the triphones could occur in the 
training data only once). So the next necessary step is state-
tying, where all similar states from different models are 
tied up. With state tying, more data is available for training 
of each state and hence model robustness is increased. For 
example, triphones a-b+s and a-b+l have very similar 
parameters of their first states, because both are describing 
the a-b transition. So these two states can be tied up, next 
trained as one state and thus be more robust. After training, 
a set of tied states, a set of triphones and a set of triphone-
to-tied states references are obtained. Each triphone model 
contains three references to three tied states. Every tied 

Nr. Mix. Init. Reest. Log. Prob.

1 8 Data1_MS Data1 -64,042 

2 8 Data1_AS Data1 -63,876 

3 32 Data1_MS Data1 -62,569 

4 32 Data1_AS Data1 -62,158 

5 32 Data1_MS+ 
Data2_MS Data1 -62,715 

6 32 Data1_MS+ 
Data2_MS 

Data1+ 
Data2 -63,410 

7 32 Data1_MS+ 
Data2_MS_Male   Data1 -62,660 

8 32 Data1_MS+ 
Data2_MS_Male   

Data1+ 
Data2_Male -63,226 
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state can be shared by more triphone models. For state-
tying possibilities determination, phonetic binary trees are 
used. They are based on phonetic questions like: „Is the left 
context of the phoneme a consonant?“ or „Is the right con-
text of the phoneme vowel a?“. Answers to these questions 
are always only yes, or no, so it is always decidable, if two 
states can be tied up or not. The state-tying algorithm starts 
with monophone models and tries to divide states using the 
binary tree questions into triphones. With state tying, 
thresholds R0 and TB have to be defined. R0 and TB val-
ues affect the degree of tying and therefore the result num-
ber of tied states. R0 defines the minimal number of frames 
that every tied state has to have after division. TB is a 
minimal logarithmic probability increase, arisen from divi-
sion of one state onto two. Detailed description of state-
tying algorithm can be found in [4]. 

For triphone models initialization, the following one-
mixture monophone models were used: 

1.   Initialization: Data1_AS             
Reestimation: Data1, 12 iterations 

2.   Initialization: Data1_MS + Data2_MS_Male       
Reestimation: Data1 + Data2_Male, 12 iterations 

For state-tying, the following R0 and TB values were used: 
1. R0 = 100, TB = 300 - the most often used combination. 
The R0 value ensures a sufficient robustness of one-mix-
ture three-state models (100 frames for each Gaussian 
mixture) and the TB value an adequate probability in-
crease. 
2. R0 = 50, TB = 100 - small threshold values result in 
more tied states, than in the first case, but there will be not 
enough data for robust model training.   
3. R0 = 300, TB = 0 – the maximal number of tied states is 
needed, regardless the probability increase. Models with 
300 frames per state can be later turned into more-mixture 
models with robustness preserved.  

The results of the training are shown in Tab. 2. 
 

Nr Mix Training R0 TB Triph. States Log. 
prob. 

9 1 Data1 100 300 3916 2687 -63,595

10 1 Data1 50 100 5324 6468 -62,535

11 3 Data1 300 0 3721 2056 -62,435

12 1 Data1+ 
Data2_Male 100 300 9664 27474 -64,208

Tab. 2. Triphone models training results. 

3.3 Comparing Models 
In our research, 8 sets of monophone and 4 sets of 

triphone models were trained. Now we have to find the 
best set, which will be used for automatic segmentation of 
our data. Average logarithmic probability per frame was 
the only model quality criterion so far. In this chapter, we 
will show its reliability. 

For our tests, the manually segmented part of Data1 
was used. With all models, the automatic segmentation has 
been done and shifts between manually and automatically 
segmented boundaries have been measured. In Fig. 3-6, 
there are histograms that show the frequency of boundary 
shifts of different lengths. On the x-axis, boundary shifts 
with 10 ms steps are presented with following rules: All 
borders with an accuracy error between -5 and 5 ms are 
included in 0 ms value. All borders with an error between 
+5 ms and +15 ms are included in +10 ms value. All bor-
ders with an error between -5 ms and -15 ms are included 
in -10 ms value and so on. The y-axis represents the num-
ber of incorrect borders to all borders ratio for each 10 ms 
shift. 

From these histograms it is obvious, that the most ac-
curate segmentation was reached with the model set num-
ber 3 (32-mixture monophones). Overall 37% of phoneme 
borders has been shifted less than ±5 ms and 72% of them 
has been placed into ±15 ms interval. In comparison with 
common 64-mixture models for continuous speech recog-
nition (Fig. 3), there is more than 10% difference in ±5 ms 
interval. Other 32-mixture monophone models had very 
similar results (Fig. 4), models 8 were the worst. In Fig. 5, 
there are 8-mixture monophone models results. It was 
proved, that models initialized with automatically seg-
mented data (models2) are much worse, than models ini-
tialized with manually segmented data (models1). 

Triphone models (Fig. 6), although proposed to be 
better than monophones, were worse in result. One possi-
ble reason could be insufficiency of training data. There 
were no significant differences between triphone models in 
their results. 

Logarithmic probability has appeared to be a treach-
erous criterion of model quality. For both 8-mixture and 
32-mixture variants, logarithmic probability was higher for 
models initialized with automatically segmented data. In 
our practical tests, models initialized with manually seg-
mented data were much better.   
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Fig. 3. Best models for automatic segmentation compared with 
common models for continuous speech recognition. 
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Fig. 4. 32-mixture monophone models. 
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Fig. 5. 8-mixture monophone models. 
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Fig. 6. Triphone models. 

4. Conclusion 
In this paper we focused on large speech database 

automatic phoneme segmentation. HMM training process 
has been discussed, with emphasis on signal framing and 
speech corpus quality. To prove our statements, several 
HMM variants has been trained and segmentation tests has 
been done. Reliability of logarithmic probability as a model 
quality indicator has been disproved. From our work, 

the following conclusions have been done:  
 

• In speech framing, the frame rate should be less than 
5 ms for accurate segmentation. 

• It is necessary to have enough training data (100 
frames per mixture) to keep sufficient model robust-
ness. 

• Triphone models compared with monophones are 
harder to train, more computer time is needed and 
worse results are given.  

• For the initialization phase, a small part of manually 
segmented data is better to use, than all the data 
automatically (inaccurately) segmented. 

• Logarithmic probability is not a reliable model quality 
indicator. 

This method has been used for unit database creation 
in real triphone-based TTS system [1] with a very satis-
factory result. 
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